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And in fact there is no reason except prejudice, so far

as I can discover, for denying the reality of relations.

— Bertrand Russell

Abstract. We demonstrate that the quantum-mechanical description of composite

physical systems of an arbitrary number of similar fermions in all their admissible

states, mixed or pure, for all finite-dimensional Hilbert-spaces, is not in conflict with

Leibniz’s Principle of the Identity of Indiscernibles (PII). We discern the fermions

by means of physically meaningful, permutation-invariant categorical relations, i.e.

relations independent of the quantum-mechanical probabilities. If, indeed, proba-

bilistic relations are permitted as well, we argue that similar bosons can also be

discerned in all their admissible states; but their categorical discernibility turns

out to be state-dependent matter. In all demonstrated cases of discernibility, the

fermions and the bosons are discerned (i) with only minimal assumptions on the in-

terpretation of quantum mechanics, (ii) without appealing to metaphysical notions

such as Scotusian haecceitas, Lockean substrata, Postian transcendental individual-

ity or Adamsian primitive thisness, and (iii) without revising the general framework

of classical elementary predicate logic and standard set-theory, thus without revising

standard mathematics. This confutes: (a) the currently dominant view that, pro-

vided (i) and (ii), the quantum-mechanical description of such composite physical

systems always conflicts with PII; and (b) that if PII can be saved at all, the only

way to do it is by adopting one or other of the thick metaphysical notions mentioned

above.

Among the most general and influential arguments for the currently dominant

view are those due to Schrödinger, Margenau, Cortes, Dalla Chiara, Di Francia,

Redhead, French, Teller, Butterfield, Giuntini, Mittelstaedt, Castellani, Krause and

Huggett. We review them succinctly and critically as well as related arguments by

Van Fraassen and Massimi.
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1 Introduction: the Currently Dominant View

1.1 Weyl on Leibniz’s Principle

In his pioneering monograph Gruppentheorie und Quantenmechanik, Hermann Weyl con-

nected the then newly born quantum-mechanical description of a composite physical sys-

tem of two electrons — of which Pauli’s Exclusion Principle was the pillar (cf. Jammer

[1966, pp. 143–151]) — to a renowned metaphysical principle, namely Leibniz’s Principle

of the Identity of Indiscernibles (Weyl [1928: iv.c. § 9]):

. . . die Möglichkeit, dass eines der beiden Individuen Hans und Karl im Quanten-

zustand E1, das andere im Quantenzustand E2 sich befindet, vereinigt nicht zwei

unterscheidbare Fälle, die durch die Vertauschung von Hans und Karl auseinander

hervorgehen; es its unmöglich, die wesensgleichen Individuen Hand und Karl, jedes

für sich, in seiner dauernden Identität mit sich selbst festzuhalten. Von Elektronen

kann man prinzipiell nicht den Nachweis ihres Alibi verlangen. So setzt sich in der

modernen Quantentheorie das Leibnizsche Princip von der coincidentia indiscerni-

bilium durch.

[Our translation: . . . the possibility that one of the individuals Hans and Karl is in

the quantum state E1 and the other in the quantum state E2 does not encompass

two discernible cases, which arise by permuting Hans and Karl; it is impossible for

either of these individuals Hans and Karl, who have the same nature, to retain his

identity. Even in principle one cannot demand an alibi of an electron. In this way

the Leibnizian principle of coincidentia indiscernibilium carries through in modern

quantum mechanics.]

The concluding sentence is puzzling. For if electrons Hans and Karl have lost their

identity because their quantum-mechanical states “do not encompass two discernible

cases”, and if it is “in principle impossible to demand an alibi” of Hans and Karl, that is,

if the two electrons are indiscernible, and nonetheless there remain two electrons, Hans

and Karl, which thus are different solo numero — and solo nomine — then the conclusion

seems deductively inevitable that Leibniz’s Principle of the Identity of Indiscernibles (PII)

does not carry through in quantum mechanics (qm). Yet Weyl concludes that PII does

carry through in qm.

Misprint? Unlikely. In the English translation of the second and revised edition of

Gruppentheorie und Quantenmechanik of 1931 (in its Preface, translator H.P. Robertson

expresses his thanks to Weyl “for general encouragement and assistance”), Hans and Karl

have been replaced with Ike and Mike, the passage we quoted above has been extended
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a little bit by letting the electrons speak up and say ‘I am Ike’ and ‘I am Mike’, but

the concluding sentence has remained the same, glossing over the fact that the German

durchsetzen (to carry through) has been translated inaccurately as holds (Weyl [1931,

p. 241]).

Furthermore, in his philosophical magnum opus Philosophy of Mathematics and Nat-

ural Science, Weyl [1949, p. 247] wrote:

The upshot of it all is that the electrons satisfy Leibniz’s principium identitatis

indiscernibilium, or that the electronic gas is a ‘monomial aggregate’ (Fermi-Dirac

statistics). In a profound and precise sense physics corroborates the Mutakallimûn:

neither to the photon nor to the (positive and negative) electron can one ascribe

individuality. As to the Leibniz-Pauli Exclusion Principle, it is found to hold for

electrons but not for photons.

The puzzle deepens. Earlier in the book, Weyl [1949, p. 7] characterises an object from

some category — such as electrons and photons — as an individual iff it has a general

property that no other object from that category has. Weyl concluded that qm deprives

photons (of the same frequency and velocity) and electrons in a composite physical system

of their individuality — which, to recall, for Weyl means: their discernibility by a property.

Ernst Cassirer followed suit in his Determinismus und Indeterminismus in der modernen

Physik [1937, §V.II, fn 47]. But then again, the conclusion seems deductively inevitable

that electrons do not satisfy PII in qm, because the many particles are not discernible in

the required Weylian-Leibnizian manner, which is by some property: they are discerned

solo numero. Yet Weyl opens the quoted passage by asserting that electrons satisfy PII.

Furthermore, in the concluding sentence of the passage quoted above, Weyl has ap-

pended ‘Leibniz’ to Pauli’s Exclusion Principle. Why append the name of a 17th-century

metaphysician to a principle of qm that saw the light of day in 1925, more than two-

hundred years after Leibniz (1646-1719) passed away? Clearly, we submit, because Pauli’s

Exclusion Principle, which holds for electrons and not for photons, as Weyl emphasised,

must somehow have to do with the satisfaction of PII by electrons and the violation of

PII by photons. Since Pauli’s Exclusion Principle is a constraint on physical states, that

somehow must originate in these constrained states. But precisely how this works, thereof

Weyl passes over in silence.

There is a way to make sense of what Weyl said, as follows. Weyl had Pauli’s original

formulation of his Exclusion Principle in mind, that still lingers on in textbooks on qm: ‘no

two electrons in one atom occupy the same state’, where an atomic state is characterised

by the principal atomic quantum number n (energy-level), azimuthal quantum number

l (orbital angular momentum), angular quantum number j (total angular momentum)
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and magnetic quantum number m (z-component of j); cf. Jammer [1966, p. 139]. Then

the atomic states that electrons Hans and Karl occupy, when inhabiting the same atom,

discern Hans and Karl after all. Thus Weyl’s terminology of “the Leibniz-Pauli Exclusion

Principle”.

But then, in 1949, had Weyl still not understood that this way of formulating the

Exclusion Principle is not general, even incorrect, and that it was by then replaced with

the general and correct Symmetrisation Postulate? One of the founding fathers of the

quantum-mathematical treatment of composite physical systems of similar particles in

terms of unitary representations of the permutation group was led by the nose, by an

erroneous formulation of a twenty-five years old rule governing atomic spectra, to making

metaphysical pronouncements about the building blocks of matter?

The currently dominant view on this subject-matter has decided otherwise. The Prin-

ciple of the Identity of Indiscernibles (PII), without further metaphysical input, stands

refuted; in full generality, the quantum-mechanical description of composite systems of

similar particles, whether they be fermions or bosons, provides the decisive refutation

of PII. Those composing particles exist in physical reality and they are indiscernible yet

different solo numero. Sad news for friends of Leibniz. Perhaps Weyl was confused, pre-

sumably by Pauli’s original formulation of his Exclusion Principle; certainly Weyl had it

wrong when it comes to fermions. But the propounders of the dominant view treat Weyl

charitably. When one of its spearholders quotes from Weyl’s The Theory of Groups and

Quantum Mechanics [1931] (the same passage we quoted from the German original) in

his Lemma ‘Identity and Individuality in Quantum Theory’ of the Stanford Encyclopedia

of Philosophy, Weyl’s concluding sentence is omitted (French [2006]); and the opening

sentence of the passage we quoted above from Weyl [1949] is never quoted by anyone.

These sparse statements of Weyl on the status of PII in qm have been fading away in the

fog of history. Out of the fog has come the currently dominant view.

Before we continue to describe briefly the rise of the currently dominant view, we

pause in order to introduce some terminology.

1.2 Intermezzo: Terminology and Leibnizian Principles

The word object signifies here something of great generality, although less extreme than

entity, which can be absolutely anything. We use ‘object’ in the ‘metaphysically thin’

Frege-Quine sense: values of variables bound by quantification and subject to predicative

identity-criteria, that can in principle be described in elementary predicative formal lan-

guages, incorporating elementary predicate logic. For the sake of emphasis and contrast,

we shall therefore frequently speak of formal objects, but we shall, for the sake of brevity,
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often also drop the adjective ‘formal’ and simply speak of objects. Examples of entities that

definitely can be treated as formal objects: planets, persons, proteins, telescopes, num-

bers, sets, texts; examples of entities that plausibly cannot be treated as formal objects:

flames, shadows, sounds, impressions, hopes, holes — and also (because the language

is elementary, hence first-order) properties and relations, unless treated extensionally by

set-theoretical means.

A particular kind of formal object forms physical objects, which we take to include

both physical events and physical systems — the last-mentioned is a term generic in

(philosophy of) physics. Physical systems in turn comprise material objects, but not

conversely; physical systems are more general than material objects in that they can be

built out of material objects, fields, radiation, space and time; the four last-mentioned

items are typically ‘non-material’ yet indisputably ‘physical’. An elementary particle can

be characterised mereologically as a physical system having no proper subsystems, such

as leptons, quarks and gauge bosons. Within quantum theory one can characterise kinds

of elementary particles also mathematically, in Wignerian fashion: that is, in terms of

irreducible representations of the space-time symmetry group, the Galilei-group in the

case of qm and the Poincaré-group in the case of relativistic quantum field theory (cf.

Castellani [1998, pp. 181–194]). When the material object is not an elementary particle

and has a non-vanishing size, one speaks of a material body.

We call physical objects in a set absolutely discernible iff for every object there is some

physical property that it has but all the others in the set lack, and relationally discernible

iff for every object there is some physical relation that discerns it from all others (cf.

Section 4 for rigorous definitions). An object is indiscernible iff it is both absolutely and

relationally indiscernible, and hence discernible iff it is discernible either way or both ways.

The terms ‘qualitative’, ‘quantitative’ and ‘numerical discernibility’ also abound in the

literature; they can be defined in terms of our notions: physical objects are qualitatively

discernible iff they are discernible; they are quantitatively discernible, or synonymously

numerically discernible, iff they are non-identical. Often we call objects that are absolutely

discernible from all other objects individuals ; those that are only relationally discernible

from all other objects we call relationals. Frequently one encounters talk of a physical

object ‘having an identity’, which we shall accommodate as the property that discerns

the object absolutely (if it is absolutely discernible); then relationals do not ‘have an

identity’ but individuals do. To invididuate an object means to discern it absolutely; then

individuals can be individuated, relationals cannot. Finally, particles are distinguishable

iff they can be individuated.

We next give three versions of Leibniz’s Principle for physical objects. The Principle

of the Identity of Absolute Indiscernibles (PII-A) states that no two physical objects are
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absolutely indiscernible. The Principle of the Identity of Relational Indiscernibles (PII-R)

states that no two physical objects are relationally indiscernible. And the Principle of the

Identity of Indiscernibles (PII) states that no two physical objects are absolutely and re-

lationally indiscernible; or synonymously, two physical objects are numerically discernible

only if they are qualitatively discernible. All converse statements are uncontroversial

tautologies: no physical object can be discerned from itself — the indiscernibility of iden-

ticals, aka Leibniz’s Law. The relevant logical relations between PII, PII-A and PII-R are

as follows. Obviously PII-A and PII-R each are sufficient for PII,

PII-A −→ PII and PII-R −→ PII , (1)

which makes even their disjunction sufficient for PII. So if PII fails, then both PII-A and

PII-R fail. Since absolute discernibles are always relational discernibles — see (40) and

the sentence preceding it — one quickly proves that PII-R is also necessary for PII, which

implies with (1) that PII and PII-R stand or fall together:

PII ←→ PII-R . (2)

But PII-A is not necessary for PII, i.e. ¬(PII −→ PII-A), which implies that it is a

genuine logical possibility that PII-A falls whilst PII stands tall:

PII ∧ ¬PII-A . (3)

The main conclusion of the current paper will be that similar elementary particles turn this

logical possibility into a physical actuality: they are non-identical absolute indiscernibles.

In his Discourse on Metaphysics, Leibniz was the first to discuss PII-A elaborately and

to apply it to ‘substances’; in several places, Leibniz defends (as we would put it today)

a reduction of relations to properties, which makes mentioning relations in discernibility

otiose (see Russell [1937, pp. 13–15] and Ishiguro [1990, pp. 118–122, 130–142] for Leibniz’s

struggle with relations). When not all relations reduce to properties, and we thus have

to consider properties and relations separately and independently, then, as a matter of

logic, PII-R is as much in play as PII-A, and PII as stated is mandatory. Massimi [2001]

holds that a version of Leibniz’s Principle which considers only relations irreducible to

properties (a strengthened version of our PII-R) as the one that is applicable in qm (cf.

Section 3.3).

Let us end by noting that logically speaking one could refine ‘relational discernibility’

to ‘n-discernibility’, meaning that the objects are discerned by some n-ary relation. Then

an infinite hierarchy of indiscernibility principles ensues, each one logically weaker than

the next one. Since we shall not need this, we leave it.
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1.3 The Rise of the Currently Dominant View

Neither similar bosons nor similar fermions are individuals in our sense. This chimes well

with Erwin Schrödinger’s view on particle identity; he, more than any other physicist of his

generation, was preoccupied with the philosophical significance of the indistinguishability

of particles in qm. He, like Weyl, insisted that the building blocks of matter are not

individuals. In a series of public lectures given in 1950 at the Dublin Institute for Advanced

Studies, Schrödinger literally begged his audience to believe him when he said that “it is

beyond doubt that the question of ‘sameness’, of identity, really and truly has no meaning”

(Schrödinger [1996, p. 122]). But just what he meant by these puzzling words, Schrödinger

never made clear. And, in contrast to Weyl, he never connected the issue to PII.

In a paper devoted to the philosophical importance of Pauli’s Exclusion Principle,

the American physicist-philosopher Henry Margenau was instrumental in establishing the

currently dominant view in philosophy of science in general and in philosophy of physics

in particular. Margenau did not mention Weyl explicitly, but he did write the following

[1944, p. 202]:

This conclusion recalls Leibniz’s principle of the identity of indiscernibles; indeed

physicists have occasionally thought that the Exclusion Principle implies this prin-

ciple with regard to elementary particles of the same species. It would be interesting

indeed if modern physics had something to say about this much debated postulate

of logic. Unfortunately, the relevance is but remote, and the Exclusion Principle,

so far as it goes, contradicts Leibniz, who stated the meaning of the principle of

identity of indiscernibles in this way: non dari posse in natura duas res singulares

solo numero differentes.

Which physicists did Margenau have in mind in the opening sentence after the semi-

colon? Hermann Weyl seems the likely candidate. In The Nature of Physical Reality,

Margenau [1950, p. 441] drew the same conclusion.

The subject lay dormant for about three decades, when it was taken up again in a

sequence of papers mostly appearing in Philosophy of Science (Cortes [1976], who bran-

dished PII “a false principle”, Barnette [1978], Ginsberg [1981], Fraassen [1984]) (for

a review of the meaning of ’particle identity’ in the physics literature in this period,

see Saunders [2006b]). A second sequence was initiated in the late 1980ies by Steven

French’s PhD-thesis, supervised by M.L.G. Redhead (French & Redhead [1988]), followed

by Giuntini & Mittelstaedt [1989], who argued that although demonstrably valid in clas-

sical logic, in quantum logic the validity of PII cannot be established; by French [1989a],

who assured us that PII “is not contingently true either”, French [1989b], [2006], French
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& Rickles [2003], Redhead & Teller [1992], Butterfield [1993], Castellani & Mittelstaedt

[2000], and Huggett [2003]; refinements and elaborations have been appearing ever since,

lately delving into the metaphysics of ‘object’ and ‘individual’ (French [1998], French &

Krause [2006]).

What all these papers have in common is that they subscribe to Margenau’s conclu-

sion (PII-A stands refuted by qm), or they argue for a stronger conclusion, namely that

both PII-R and PII also stand refuted by qm. French & Rickles [2003, p. 221] speak of

“the Received View” (French & Krause [2006, p. xiii] follow suit); see also Castellani &

Mittelstaedt [2000, p. 1592], who call the currently dominant view “commonly accepted”.

In the most recent version of his encyclopedia article, French [2006] rounds the situation

up as follows:

If the particles are taken to possess both their intrinsic and state-dependent proper-

ties in common, as suggested above, then there is a sense in which even the weakest

form of the Principle fails [our PII and our emphasis, fam & sws]. On this under-

standing, the Principle of Identity of Indiscernibles is actually false. Hence it cannot

be used to effectively guarantee individuation via the state-dependent properties by

analogy with the classical case. If one wishes to maintain that quantum particles are

individuals, then their individuality will have to be taken as conferred by Lockean

substance, primitive thisness or, in general, some form of non-qualitative haecceistic

difference.

The only way to save PII is to adopt some form of thick metaphysics.

Thus has arisen the currently dominant view.

Van Fraassen [1984] argued that Margenau’s conclusion tacitly relied on the ‘interpre-

tational’ claim that qm is ‘complete’, i.e. there are no hidden variables, and thus presents

us with a dilemma between (i) the incompleteness of qm and (ii) the incompatibility

between qm and PII. The currently dominant view thus tacitly assumes that qm is ‘com-

plete’; if it were ‘incomplete’, then completion by hidden variables would open the way

to discern particles by means of values of these hidden variables. Van Fraassen [1991]

proceeded with this criticism by showing that Margenau-type arguments rely on what

may indeed be called an ‘interpretational’ postulate of qm, which can be rejected without

affecting the empirical content of qm; the conclusion then is that the status of Leibniz’s

Principle in qm is a matter of interpretation and lies beyond the reach of empirical re-

search (cf. Section 3.2). This conclusion has been reinforced by Brown et al. [1999], who

argued that in the Bohmian ‘interpretation’ of qm, similar particles can be discerned by

means of their trajectories in configuration space. In that ‘interpretation’ of qm, there is

a peaceful place for PII.
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Besides Van Fraassen’s analysis, very few critical analyses of Margenau’s argument

have appeared. The most recent is Massimi’s [2001], who argued that a presupposition of

PII-A is not satisfied and that — tacitly relying on a Strawsonian account of presupposi-

tions — therefore the argument of Margenau, and by implication all sibling arguments for

the same conclusion, cannot even take off, let alone establish that PII-A stands refuted

by qm; it is neither refuted nor vindicated by qm, “it is simply not applicable”, concludes

Massimi [2001, p. 324]. Nonetheless Massimi [2001, p. 327, fn. 21] adheres to the domi-

nant view in that the version of Leibniz’s Principle that she deems applicable, namely the

version that only appeals to relations (PII-R), does stand refuted by standard qm.

The dominant view that PII stands refuted by qm unless qm is supplemented with

additional metaphysical principles has motivated and is motivating programmes in philo-

sophical logic that aim to accommodate rigorously the violation of PII, by means of

quasi-set theory, quantum-set theory and so-called Schrödinger-logics; cf. Krause [1992],

Dalla Chiara & Toraldo di Francia [1993], Dalla Chiara, Giuntini and Krause [1998],

French and Krause [2006]. The currently dominant view also has motivated and is mo-

tivating metaphysical programmes that seek to develop a notion of physical object that

includes Lockean substrata or Scotusian haecceitas or Postian transcendental individu-

ality or Adamsian primitive thisness; in short, some thick metaphysical notion that is

metaphorically related to pointing your finger to an observable material body, alluding to

an ostensive definition (see Adams [1979]). But none of this, we claim, is needed.

1.4 Overview

What follows in this article is organised as follows. In Section 2, we rehearse some rigorous

definitions, postulates and theorems (without proof) of qm for the sake of future reference.

In Section 3, we analyse the standard argument that has been provided for the alleged

downfall of PII in qm, and we analyse Van Fraassen’s and Massimi’s criticisms of this

standard argument. In Section 4, we inject a minimum yet necessary dose of logical

rigour into the concepts of identity and discernibility. In Section 5, we prove several

theorems that will establish that similar fermions are relationally discernible in every

admissible state and that the discernibility of similar bosons becomes a contingent, i.e.

state-dependent issue; this crucial Section is an elaboration of an earlier insight of one

of us, mentioned in Saunders [2003, p. 294] concerning two fermions in the singlet-state,

which was developed further in Saunders [2006a]). In Section 6, we defend our results

against criticism levelled by French & Krause against Saunders’ earlier insight.
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2 Elements of Quantum Mechanics

2.1 Physical States and Physical Magnitudes

Most postulates of qm tell us how certain physical concepts are represented mathemati-

cally: physical state, physical magnitude, physical property.

We begin with physical states. The State Postulate (StateP) associates with every

physical system S is one superselected sector in some Hilbert-space; every possible physical

state corresponds to a statistical operator acting on that sector. Whenever S is composed

of N > 2 subsystems, the associated sector Hilbert-space is the direct-product space,

denoted by HN , of the N sector Hilbert-spaces Hj associated to the N subsystems Sj :

HN = H1 ⊗H2 ⊗ · · · ⊗ HN . (4)

Every possible physical state of S corresponds to a statistical operator W ∈ S(H) that

acts on HN , and vice versa; and every possible physical state of the j-th subsystem Sj of

S corresponds to the marginal statistical operator Wj — obtained by partial tracing of

W with respect to the j-th factor-space Hj v HN (4).

What we call the Weak Magnitude Postulate (WkMP) says that every physical mag-

nitude that pertains to physical system S is represented by an operator that acts on

the sector Hilbert-space associated to S (see State Postulate); these so-called magnitude-

operators of S may be collected in set MS(H).

Stronger magnitude postulates provide inclusion relations between MS(H) and the

sets of all projectors, self-adjoint operators, positive operators, normal operators, and

what have you. Traditionally all and only self-adjoint ones have been thought to be

magnitude-operators (J. von Neumann), but the ‘all’ has turned out to be problematic,

at least in the case of systems whose Hilbert-space has infinite dimensions. The Standard

Magnitude Postulate (StMP) adds to the Weak one that the magnitude-operators have

to be self-adjoint: MS(H)⊆ Os.a.(H).

To recall, a super-selected physical magnitude corresponds to an operator A ∈MS(H)

that commutes with every magnitude-operator in MS(H). Consequently all super-selected

magnitude-operators commute (for succinct and rigorous introductions to the subject of

super-selection rules, see Beltrametti & Cassinelli [1981, pp. 45–51], Giulini [2003].)

2.2 Composite Physical Systems of Similar Particles

Whenever the composite system S consists of N similar physical subsystems to which

we associate the same sector Hilbert-space H, the State Postulate (4) implies that the
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Hilbert-space we associate with S is an N -factor direct-product space:

HN = H⊗H⊗ · · · ⊗ H . (5)

For every N ∈ N+ and every permutation π ∈ PN (a bijection from {1, 2, . . . , N} to

itself, of which there are N !), we denote by Uπ the unitary permutation operator on HN

and call it a permutator ; it is defined as usual, by its action on labels of the factors in

the direct-product basis vectors of HN (one can show that this definition is independent

from the chosen basis). These unitary permutation operators form a generally reducible

representation of the non-Abelian permutation group PN . Definition: (bounded) operator

B acting on HN is symmetric iff B commutes with every Uπ:

∀π ∈ PN : [Uπ, B]− = 0 . (6)

Theorem: for every projector P in the lattice P(HN) of projectors onHN , its range P [HN ]

is an invariant subspace of HN under the action of PN iff P is symmetric. Projectors

that project on eigenspaces of a symmetric operator are symmetric too, and therefore

all spectral projectors of a symmetric operator whose eigenspaces combine to H are also

symmetric. Consider next the symmetriser, which sends an operator A to a symmetric

version of it:

A 7→ Asym ≡
1

N !

N !∑
π∈PN

UπAU
†
π , (7)

which map is a projector. Of course all symmetrised operators are symmetric. Being a

statistical operator is invariant under symmetrisation (7), but being a pure one, i.e. being

a projector, may not be!

Let A be an operator acting on HN and W ∈ S(HN). If A is symmetric then for any

W

Tr(AW ) = Tr(AWsym) ; (8)

and if W is symmetric, then for any A

Tr(AW ) = Tr(AsymW ) . (9)

(For proofs of all theorems reported in this subsection, see Bach [1997], Ch. 2.) Of prime

importance are the following two orthogonal projectors from the lattice P(HN),

Π+
N ≡

1

N !

N !∑
π∈PN

Uπ and Π−N ≡
1

N !

N !∑
π∈PN

sign(π)Uπ , (10)
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where sign(π) ∈ {±1} is the sign of the permutation π (+1 if it is even, −1 if odd). These

operators lead to the following permutation-invariant orthogonal subspaces:

HN
+ ≡ Π+

N

[
HN
]

and HN
− ≡ Π−N

[
HN
]
, (11)

which are called the symmetric and the anti-symmetric subspaces of HN , respectively;

their vectors are predicated accordingly. These subspaces can, alternatively, be seen as

generated by the symmetricised and anti-symmetricised versions of the products of basis-

vectors in HN . Only for N = 2 we have that HN
− ⊕HN

+ = HN .

Following Bach [1997, p. 19], we define three classes of statistical operators in S(HN),

two of which are fundamental: A statistical operator W ∈ S(HN) is mb-symmetric

(Maxwell-Boltzmann) iff W is a homogeneous product (a product of N identical statisti-

cal operators acting on H); W is be-symmetric (Bose-Einstein) iff W = UπW for every

π ∈ PN ; and W is fd-symmetric (Fermi-Dirac), or anti-symmetric, iff W = sign(π)UπW

for every π ∈ PN . Let j(1), . . . , j(N) ∈ {1, 2, . . . , d}, where d = dimH. We say that a

statistical operator W ∈ S(HN) is Paulian iff for every basis |ξj(1)〉, . . ., |ξj(N)〉 ∈ HN ,

〈ξj(1) ⊗ ξj(2) ⊗ · · · ⊗ ξj(N)|W |ξj(1) ⊗ ξj(2) ⊗ · · · ⊗ ξj(N)〉 = 0 , (12)

whenever at least two of the occurring basis-vectors coincide, that is, whenever j(k) = j(l)

for some k, l ∈ {1, 2, . . . , N} (what we call for the sake of brevity ‘Paulian’, Bach [1997,

p. 22] calls “satisfies the exclusion principle”). So in no linear expansion of a pure Paulian

state does a tensor product of states occur in which a basis-vector is repeated.

The Symmetrisation Postulate (SymP) states that for a composite system of N >

2 similar particles with N -fold direct-product Hilbert-space HN (5), (i) the projectors

Π±N (10) are superselection-operators, i.e. HN
+ and HN

− (11) are sectors, (ii) states in

these sectors have integer, respectively half-integer spin, (iii) only BE- and FD- statistical

operators are state operators (Dichotomy). SymP(i) implies that superpositions of pure

be- and fd-vectors, which lie in sectors HN
+ and HN

− , respectively, never correspond to

physical states. SymP(ii) guarantees the correct assignment of spin with statistics (in

accord with experimental results and in anticipation of the Spin-Statistics Theorem of

relativistic quantum field theory). SymP(iii) (Dichotomy) rules out the possibilty of

’para-statistics’, which we pass over.

We next report a few theorems. All mb-, be- and fd-symmetric statistical operators

are symmetric (6); the three symmetry properties of statistical operators of being mb-, be-

and fd-symmetric are invariant under partial tracing; hence the states of the subsystems

inherit the symmetry-properties from the state of the composite system. Theorem: the

be- and fd-symmetric statistical operators are mutually exclusive, and the same holds for
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mb- and fd-symmetric ones; but the be- and mb-symmetric statistical operators are not:

their intersection consists of all and only pure mb-symmetric statistical operators. The

last-mentioned are known in quantum optics as coherent states ; quantum-opticians speak

of ‘classical light’. They may, in this sense, have more than a purely formal significance.

And of course these three types of symmetric statistical operators do not really exhaust

the set Ssym(HN) of all such operators: we have excluded the para-statistical ones by fiat.

Theorem: no mb-state and no be-state is Paulian; every fd-state is Paulian (12). Thus

each basis-vector of the anti-symmetric Hilbert-space HN
− is a superposition of product

states each of which occurs only once. This is the origin of the still widespread but

misleading terminology ‘no two electrons are in the same state’. Misleading, because

of the following Theorem: all marginal statistical operators of an arbitrary symmetric

statistical operator are symmetric and they are all identical. Hence all single particle

states are identical whenever W is symmetric; i.e. for all j , k ∈ {1 ,2 , . . . ,N } and every

symmetric W :

Wj = Wk . (13)

All N similar particles always have an identical (mixed) physical state.

Let A be some magnitude-operator pertaining to subsystem Sj of composite system

S, in other words A ∈Mj (H). Then that very same physical magnitude A is represented

by the following operator acting on HN :

Aj ≡ 1 ⊗ 1 ⊗ · · · ⊗ A⊗ 1 ⊗ · · · ⊗ 1 ⊗ 1︸ ︷︷ ︸
N factors

, (14)

where A appears as the j-th ⊗-factor. Theorem: all absolute expectation values (ev)

for these (non-symmetric) operators are identical in every symmetric state, i.e. for all

j , k ∈ {1 ,2 , . . . ,N } and every symmetric W :

ev(Aj ;W ) = Tr(AjW ) = Tr(AkW ) = ev(Ak ;W ) . (15)

The same holds by implication for conditional state operators and concomitant condi-

tional expectation values. More precisely, define the conditional statistical operator WP

as PWP/Tr(PW ), which is ‘conditioned’ on the ‘event’ P ∈ P(HN). Think of measuring

physical magnitude B and P being the spectral projector of the corresponding operator B

that represents a measurement-outcome being in interval ∆ ⊂ R; hence P is PB(∆). The

conditional expectation value of A conditioned on P is then defined as the expectation

value of A in the conditional state operator WP :

ev(A;W |P ) ≡ Tr(AWP ) = Tr(APWP )/Tr(PW ) . (16)
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Then for every symmetric W and every projector P :

ev(Aj ;W |P ) = Tr(AjWP ) = Tr(AkWP ) = ev(Ak ;W |P ) . (17)

We call to mind that all Born-probability distributions, conditional and absolute, of

physical magnitude-operators falling under the sway of a spectral theorem are determined

by the expectation values of their spectral projectors; and vice versa. Henceforth we shall

mostly speak about probability-measures without any loss of generality and rarely mention

expectation values.

2.3 Fermions and Bosons

There is no universal agreement in physics whether to define ‘fermions’ (a) as particles

that obey Fermi-Dirac statistics or are always in fd-states — as the term was historically

introduced — or (b) as particles that have half-integral spin; and mutatis mutandis for

‘bosons’. We adopt the original terminology (a), thereby following Dirac, Heisenberg,

Wigner, Friedrichs, Tomonaga, Lipkin, Schwinger, Haag, Weinberg, Cohen-Tannoudji,

Sakurai and many others: fermions are by definition physical systems that are always in

fd-states and bosons are always in be-states. In this context we call attention to an old

result of Wigner: a bound state with an even number of fermions or with any number

of bosons is a be-state, and a bound state with an odd number of fermions is a fd-state

(see Ehrenfest & Oppenheimer [1931]).

The only irreducible unitary representations of the rotation group (a subgroup of the

Galilei-group) are those with integer or half-integer spin. The division of particles in

these two categories is therefore exhaustive. In the light of the Spin-Statistics Theorem,

it would be enough from an empirical point of view to restrict the investigation of bosons

to the integer-spin case, but from a conceptual point of view this is to shift from Galilean

space-time to Minkowski space-time and therefore to introduce relativity theory (Lorentz-

symmetry is necessary for the proof of the Spin-Statistics Theorem) — a theory remote

from the conceptual questions we are investigating. It would be perfectly appropriate,

for example, to investigate the question of the discernibility of bosons when bosons are

described by spinors.

2.4 Physical Properties

We formulate one standard and one minimalist ‘interpretational’ postulate of qm con-

cerning properties. The strong property postulate was explicitly endorsed by, for instance,

Dirac and Von Neumann, and it is often tacit in expositions of qm. On the basis of it,

13



properties are ascribed to or withheld from physical systems and Schrödinger’s immortal

cat enters the stage.

Let us first point out that statistical operators that are not 1-dimensional projectors

can correspond to eigenstates of an operator A on H, although they are not pure states.

Let H(A; a) ⊆ Dom(A) be some eigenspace of A: for every |φ〉 ∈ H(A; a): A|φ〉 = a|φ〉,
where a ∈ C; and let PA(a) ∈ P(H) project onto H(A; a). Then we define W ∈ S(H)

to be an eigenoperator of A with eigenvalue a iff W obeys the following generalisation of

the eigenvector-equation of A:

AW = aW , (18)

for the Hilbert-vectors that lie in the intersection of the range of W and the domain of A.

Then W represents a pure (mixed) eigenstate iff W represents a pure (mixed) physical

state and is an eigenoperator (18); a physical state is pure iff the representing W is a

1-dimensional projector, otherwise mixed. The virtue of this definition is that it makes

mixed eigenstates possible. Easy theorem: all convex combinations of projectors that

project on H(A, a), or onto a proper subspace of H(A, a), are eigenoperators of A having

eigenvalue a; then for every such a projector P ∈ P(H), it holds that P 4 PA(a), where

‘4’ is the partial ordering on the lattice P(H).

We represent a quantitative physical property mathematically by the ordered pair

〈A, a〉, where A is the operator which corresponds to physical magnitude A and a ∈ C is

its value. According to the Strong Property Postulate (StrPP), a physical system S having

state operator W ∈ S(H) possesses quantitative physical property 〈A, a〉 ∈ MS(H) × C
iff W is an eigenstate of A that belongs to eigenvalue a. If system S is in some eigen-

state of A that belongs to eigenvalue a, then the probability of finding a when A is

measured, equals 1 (implied by the Born probability measure). Then it is a small step to

the following, uncontroversial conjunct of StrPP (which incidentally closely resembles the

sufficiency condition to be an element of physical reality due to Einstein, Podolsky and

Rosen), the Weak Property Postulate (WkPP): if a physical system S is in an eigenstate

of operator A ∈ MS(H), corresponding to physical magnitude A, having eigenvalue a,

then S possesses quantitative physical property 〈A, a〉.
The Projection Postulate can be deduced from StrPP in conjunction with the proposi-

tion that a measurement yielding value a for physical magnitude A permits one to ascribe

physical property 〈A, a〉 to the physical system that is being measured at or immediately

after the time of measurement. The converse of WkPP in conjunction with WkPP is

StrPP and it should be considered just as controversial as the Projection Postulate and

therefore is, unlike WkPP, far from minimalist.

WkPP implies that a physical system S always has the same quantitative properties
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associated with super-selected physical magnitudes, because S is always in the same

common eigenstate of the super-selected operators. We call these possessed quantitative

physical properties super-selected. We are now in a position to say exactly what we mean

by ‘similar’, that we have been using throughout: namely, physical systems, e.g. particles,

are similar iff they have the same super-selected quantitative physical properties — most

physicists call similar particles ‘identical’, but we prefer Dirac’s terminology for obvious

reasons (see Dirac [1947, pp. 207 ff]). The set of quantitative physical properties 〈A, a〉
that S possesses in state W we call its property-set ; denoting it by Prop(S,W ), we can

express StrPP and WkPP succinctly as follows:

StrPP : Prop(S,W ) =
{
〈A, a〉 ∈MS(H)× C | AW = aW

}
;

WkPP : Prop(S,W ) ⊇
{
〈A, a〉 ∈MS(H)× C | AW = aW

}
.

(19)

Note that the property-set Prop(S,W ) is never empty on either property postulate,

because it always contains the mentioned super-selected properties. The traditional ter-

minology is to call the super-selected properties ‘state-independent’, but here we take the

view that every physically relevant feature of S may be codified in its physical state.

We also want to state explicitly the following semantic fact, or Semantic Conditional

(SemC), which we shall need to appeal to in Sections 5.2 and 5.3: when talking of a

physical system at a given time, if we ascribe to it a property we mean this in an unqualified

sense — and thus ascribe to it at most one quantitative physical property associated with

physical magnitude A at that time:

(SemC) If physical system S possesses both 〈A, a〉 and 〈A, a′〉, then a = a′ . (20)

A person cannot possess two different weights at the same time, an elementary particle,

if it has a position at a time, cannot possess another distinct position which it has at

that time, etc.; (20) expresses this in the language of qm. In other words: if S possesses

quantitative physical property 〈A, a〉, then S does not posses property 〈A, a′〉 for every

a′ 6= a. Statement (20) is neither a tautology nor a theorem of logic, but it seems absurd

to deny it all the same. (Notice that (20) follows from StrPP — but not from WkPP —

since eigenvectors belonging to different eigenvalues are orthogonal.)

Finally, a note on relations. When physical system S is (taken as) a composite system,

built up of other physical systems, some of the properties of S determine and are deter-

mined by relations of its constituents. The fact that the distance between one’s eyes is

6 cm, say, fixes a particular relation between the eyes but also a property of one’s face, of

which the eyes are parts. In consequence both WkPP and StrPP, although giving rise to

properties of S and of its subsystems (expressed by monadic predicates), equally provide

15



conditions for the ascription of relations among constituents of S; the magnitude A may

itself be relational (as in ‘relative distance’), and likewise the operator A corresponding

to it. (This is why one does not need to introduce ‘relation postulates’ in addition to

property postulates.) Typically, however, as we shall see in the next Section, where au-

thors have made use of WkPP or StrPP, they have used them only to consider monadic

properties — that is to say, from our point of view, they have not made use of either

property postulate to ascribe relations among constituents of S, which is the key step

that we shall be taking in this paper.

2.5 Varieties of Quantum Mechanics

For the sake of convenience and future reference, we distinguish a number of quantum-

mechanical theories, based on the postulates expounded in the previous Sections. Theory

QM− is based on the State Postulate (StateP), the Weak Magnitude Postulate (WkMP)

SemC (20), the Symmetrisation Postulate (SymP) and the Weak Property Postulate

(WkPP). What we call ‘standard quantum mechanics’ (QM) obtains when we add to

QM−: the Probability Postulate (Born probability measure over measurement outcomes

for pure states and Von Neumann’s extension to mixed states; ProbP) and the Schrödinger

equation for the evolution over time if no measurements are performed; and then replace

WkMP with the stronger Standard Magnitude Postulate (StMP). (Beware: ‘qm’ in small

capitals abbreviates ‘quantum mechanics’, whereas ‘QM’ in capitals is from now on the

name of a particular quantum-mechanical theory.) Adding further to QM the Projection

Postulate and the Strong Property Postulate (StrPP) yields QM∗, a fairly popular formu-

lation of quantum mechanics among philosophers. All results we obtain rely on theories

logically weaker than QM and QM∗, namely QM− (sometimes adding ProbP), because

StrPP and the Projection Postulate never enter the arguments for our results. Since we

deduce PII, our results hold in QM and QM∗ as well.

3 Analysis of Arguments

3.1 Analysis of the Standard Argument

The currently dominant view claims the incompatibility of qm and Leibniz’s PII. Marge-

nau’s [1944] argument for this conclusion concerned a specific two-particle system; subse-

quent arguments have been more general, although most of them focussed on the physical

magnitude spin and proceeded at a disappointingly low level of generality. All arguments

have the following logical structure (see all references listed in Section 1.3 of propounders
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of the currently dominant view).

We consider a composite physical system of N > 2 similar particles; it falls under

the sway of Symm in qm. We also consider two premises, in order to distinguish sharply

those aspects of quantum mechanics that pertain to measurement and probability. The

Categorical Discernibility Premise (CatDiscPr) states that physical systems are only dis-

cernible by: (i) their physical states and (ii) their monadic physical properties. The

Probabilistic Discernibility Premise (ProbDiscPr) states that physical systems are only

discernible by (iii) their measurement outcomes, (iv) their absolute probability measures

over their measurement outcomes, and (v) their conditional probability measures over

their measurement outcomes. The Discernibility Premise (DiscPr) states that physical

systems are only discernible in ways (i)–(v) above.

As remarked in Section 3, WkPP and StrPP insofar as they are used explicitly in

the Standard Argument are applied only for deducing the monadic properties figuring

in (ii) of CatDiscPr; relations, if considered at all, enter only with (v) of ProbDiscPr as

conditional probabilities. This is the key limitation of the argument that follows.

The argument leading to the currently dominant view takes the form, which we call

the Standard Argument :(
qm ∧ DiscPr

)
` ¬PII `

(
¬PII-A ∧ ¬PII-R

)
. (21)

One proves that with respect to all features (i)–(v) mentioned in the Discernibility

Premise (DiscPr) all N particles are indiscernible (exercise: collect the relevant theorems

from Section 2.2 and prove this); whence DiscPr and PII are inconsistent. The Standard

Argument accepts qm and DiscPr, and then is compelled to reject PII (21).

We point out that sharing features (i)–(iv) of DiscPr, which concern shared properties

of each of the N particles, leads to a conflict with PII-A; and that sharing feature (v) of

ProbDiscPr, which concerns relations, leads to a conflict with PII-R. Ascribing an abso-

lute probability-measure to a particle is of course not ascribing to it a physical property of

the conservative kind we have been considering, e.g. 〈A, a〉, but it is ascribing something

to the particles and that is distinct from relating the particle to another particle; ascrib-

ing an absolute probability can be dealt with logically by means of a predicate having

one free particle-variable, whereas ascribing a conditional probablity calls for a predicate

having two free particle-variables. As Huggett [2003, pp. 242–242] has pointed out, one

can also conditionalise on joint measurement outcomes rather than single ones without

threatening the indiscernibility of the N particles, so that even polyadic predicates —

expressing n-ary relations — can be considered. For example, a ternary relation, between

three particles, 1 , 2 and 3 , can involve the following conditional probability of finding

value a for A in interval ∆1 ∈ B(R) when measured on particle 1 conditioned on jointly
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finding value b for B in interval ∆2 when measured on particle 2 and value c for C in

interval ∆3 when measured on particle 3 :

PrW (a ∈ ∆1 | b ∈ ∆2 ∧ c ∈ ∆3 ) . (22)

We consider all such probability-measures included in (v) of ProbDiscPr.

We shall shortly exhibit the general flaw of the Standard Argument (21), but in con-

clusion of this Section, we consider two prominent criticisms of the Standard Argument

that have already appeared.

3.2 VanFraassen’s Analysis

As announced earlier, Van Fraassen’s criticism [1991, pp. 423–426] of the Standard Argu-

ment (21) — clearly anticipated in Fraassen [1969] and [1984] — consists in observing its

(often only implicit) reliance on what we have called StrPP, which is an interpretational

assumption that one can reject without affecting the empirical content of quantum me-

chanics. A truly empiricist criticism. As soon as it is admitted that at most WkPP is

what is actually needed in any concrete application of the theory, and that StrPP neither

enriches nor impoverishes the theory as it is actually used, then any claim to the effect

that PII has been refuted empirically collapses. What the Standard Argument (21) es-

tablishes is only that QM∗, of which the empirically superfluous postulate StrPP is part

and parcel, violates PII; indeed, weakening StrPP to WkPP salvages PII-A and PII quite

easily. When qm is taken as QM− or QM, it stands in no logical conflict with PII.

Van Fraassen [1991, pp. 427–429] further added another empirically superfluous pos-

tulate to QM− (besides or even in stead of WkPP), e.g. some modal property postulate

(ModPP for brevity, the precise content of which we can gloss over). The ensuing “three-

fermion model with individuation” demonstrably obeys PII-A because some ascribed prop-

erties discern the particles absolutely, and therefore the conjunction of QM−, ModPP and

DiscrPr also obeys PII. The replacement of StrPP with ModPP vividly invalidates the

Standard Argument (21), but its replacement with WkPP invalidates it too.

The conclusion that Van Fraassen draws from his analysis is that whether PII stands

or falls in quantum mechanics depends, broadly speaking, on the interpretation of the

theory, and that is a matter of philosophical inquiry — or metaphysical speculation —

and not just a matter of scientific research. As far as empirical science is concerned, PII

is simply not in contention (Fraassen [2008]). We would like to redirect this conclusion by

pointing out that it is a perfectly legitimate empiricist view to insist that DiscPr should

be limited to ProbDiscPr alone, whereupon in line with the Standard Argument (21) PII

is refuted after all, so that empirical indiscernibles are identical. The right conclusion to
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draw is rather that, indeed, not only property postulates (StrPP, WkPP, ModPP) are

a matter of interpretation but also discernibility premises, including DiscPrProb — for

they do not even follow from QM∗, which is logically the strongest variety of quantum

mechanics. To run a little ahead of ourselves, in Section 5, we shall see how a better

analysis of the discernibility premises than the ones so far offered allows fermions (and,

in the probabilistic sense, bosons) to be discerned already in QM− (respectively, QM−

and ProbP). That is, we shall reach this conclusion with WkPP (respectively, ProbP)

as the only ‘interpretational’ postulate. This should confute the view that PII is not in

contention in physical science. Only an uncontroversial whiff of interpretation (WkPP)

will be needed to reach the mentioned conclusion; and indeed, one reaches it too from the

opposing standpoint, according to which one should replace WkPP with the Probability

Postulate (ProbP): thereby one proves the probabilistic discernibility of fermions instead

— and, indeed, of bosons. PII is definitely in contention: anyone who accepts QM− (and

ProbP) will be compelled to accept PII.

3.3 Massimi’s Analysis

The core of Massimi’s [2001, pp. 318–326] criticism of Margenau’s argument is as follows.

Leibniz’s PII reads in qm, according to Massimi, that particles having the same ‘ontolog-

ical states’ are identical (PII-A). She submits that PII-A has a presupposition, namely

that the particles “have ontological states”, which is in our terminology:

The particles have non-empty property-sets, (23)

or in terms of the sets in (19), for every particle j ∈ {1 ,2 , . . . ,N }:

Prop(j ,W ) = ∅ . (24)

She then tacitly invokes a Strawsonian account of presuppositions, according to which

propositions having a presupposition are neither false nor true whenever the presuppo-

sition is not true. She claims that the presupposition of PII-A is statement (23). With

empty property-sets we can neither speak truly nor speak falsely about absolute discerni-

bility. In Quinean terms, we then have a truth-gap. She then goes on to claim that

the property-sets of the fermions actually are empty, so that PII-A cannot be applied; it

is, Massimi [2001, p. 324] emphasises, “simply not applicable”, and therefore Margenau’s

conclusion that PII-A is in conflict with qm no longer follows — the argument against

PII-R stands however unabashed.

Parenthetically, on a Russellian account of presuppositions, Massimi’s criticism still

stands. For Russell, the presence of a presupposition of some proposition φ is a surface-

grammar phenomenon: the correct logical analysis is to consider the presupposition as
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the antecedent of a material conditional that has φ as its consequent. Then one would

formulate PII-A with presupposition (23) as follows: if the particles have non-empty

property-sets and these property-sets coincide, then the particles are identical. In this

case, however, if statement (23) is false, as Massimi claims, the entire antecedent of the

material conditional in the previous sentence is false, and we cannot use it to deduce by

modus ponendo ponens that all N particles are identical (‘N = 1’), which one needs in

order to have a contradiction with ‘N > 2’. On this Russellian account, then, one could

also claim that PII does not apply. Massimi’s argument is not wedded to a Strawsonian

analysis and therefore logically quite robust.

We disagree with Massimi’s assessment nonetheless, for the following reasons, which

we present in increasing order of importance.

First, state-ascriptions to physical systems are expressed by monadic predicates hav-

ing physical-system-variables. The physical state of a physical system S can generally be

considered as the unique dynamical property of S, governed by the Schrödinger-equation,

which embodies the ‘dynamical content’ of qm. This unique dynamical property deter-

mines all probability distributions of all physical magnitudes. If a property is dynamical,

then surely it is also physical. Massimi does not consider this. She claims that PII-A

only applies to “ontological states” (property-sets), which are empty because the states

of the particles are (improper) mixtures and then, by (her formulation of) StrPP, no

physical properties can be ascribed to the particles. Evidently Massimi tacitly operates

with a notion of ‘ontology’ which is such that physical properties that are dynamical do

not count as ‘ontological’, whilst all other physical properties, notably the quantitative

physical properties of the form 〈A, a〉, associated with physical magnitude A, do count as

‘ontological’. This strikes us as arbitrary if not indefensible.

Secondly and more importantly, even if one grants Massimi that the property-sets of

all particles are empty (23), one could still make a case that this circumstance makes the

sufficient condition in PII-A true. This is because the logical form of this sufficient condi-

tion for identity is ‘Ma ←→ Mb’, where ‘Ma ’ is any monadic predicate that expresses

that particle a has some physical property, and similarly for ‘Mb’. When particles a

and b do not have the physical any property expressed by M (because their property-sets

are empty), then ‘¬Ma ∧ ¬Mb’ is true; this implies that ‘Ma ←→ Mb’ is true. But

then the sufficient condition for identity in PII-A is true — admittedly vacuously true,

but true nonetheless, and certainly not false —, and we conclude that particles a and b

are identical. (The road via presuppositions suddenly seems ill-motivated.) As before,

we then have proven the incompatibility of QM∗ (which includes StrPP), DiscPr and

PII-A (21), thus vindicating the currently dominant view, albeit vacuously, even when

the property-sets are empty.
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But thirdly and most importantly, the property-sets are not empty. We can conclude

this on the basis of WkPP (Section 2.4). The states of the particles are always eigen-

states of all super-selected magnitude-operators (spin-magnitude, mass, charge, . . .; see

Section 2) and therefore the particles possess the associated properties permanently. Pre-

supposition (23) is true. Of course, these sets of super-selected properties are the same

for all the composing particles, so that the particles cannot be discerned by means of any

of them; and if these super-selected properties were the only physical properties, as StrPP

implies (Section 2.4), then again the conclusion would follow that the currently dominant

view is correct: PII-A is applicable and violated.

4 The Logic of Identity and Discernibility

By ‘the language of qm’ one usually means a fraction of English enriched with the sym-

bolic language of that part of mathematics that is being used in qm (all sorts of numbers,

partial differential equations, Hilbert-space, operators, wave-functions, matrices, proba-

bilities) and with quantum-mechanical vocabulary (states, magnitudes, time, properties,

particles, physical systems, subsystems, composite systems, energy, momentum, position,

etc.). The deductive apparatus can be taken to be elementary predicate logic. In phi-

losophy of physics, the language of qm is often enriched with philosophical terminology

too (perspective, branch, consciousness, holism), which we shall not be needing here. Al-

though we are not going to spell out a formalised version of the language of qm, call it

LQM, we are going to devote a few sentences to it in order to achieve a mandatory state

of clarity about the logic of identity and discernibility.

4.1 The Language of Quantum Mechanics

A language is elementary iff, first, it quantifies only over its object-variables (typical of

a 1st-order formal language) and not over anything else, notably not over its predicates

(typical of a 2nd-order formal language), and, secondly, it has a finite lexicon, that is,

a finite number of primitive predicates and names. The language of qm, LQM, will be

elementary in this sense.

First of all, we begin with some weak set-theory sufficient to erect all the mathematics

that ever will be needed in qm. The gold standard is Zermelo-Fraenkel set-theory (ZFC).

We then can produce natural numbers, real numbers, complex numbers, integrals, Hilbert-

spaces, operators, differential equations, Von Neumann rings, C∗-algebras, convex sets,

lattices, probability-measures, matrices, and all the mathematics that ever will be needed

in qm, in physics and in science in general. The elementary language of ZFC, as of
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all elementary set-theories, is L∈; it has only set-variables and a single primitive dyadic

predicate: the membership-relation (∈). Then LQM has L∈ as a sub-language.

Secondly, in order to obtain LQM, we enrich L∈ with physical-system variables (S,

a , b, c,d ,p), physical state-variables (P,Q,R) and physical magnitude-variables (A,B,C).

This should be enough. We also need a primitive dyadic predicate between physical sys-

tems of ‘is a subsystem of’, in order to speak in LQM of subsystems and composite systems ;

this dyadic predicate of subsystemhood will obey some mereological axioms (for rigour

and details, see Muller [1998, Ch. III], [2008]). The postulates of qm tell us how to connect

physical states and magnitudes intimately to mathematical entities that are all defined

in L∈ and whose existence is proved in ZFC (cf. Muller [1998, Ch. II, IV] for how this

proceeds in detail).

Thirdly and lastly, we assume that LQM does not have names, only (the four mentioned

sorts of) variables.

We have now acquired a sufficiently clear view of LQM in order to proceed at a level

of moderate rigour to define the concepts of identity and discernibility.

4.2 Identity of Physical Systems

The concept of identity (equality, =) for physical systems can be handled in two different

ways: either as a primitive dyadic predicate or as a defined one. When taken as primitive,

it is governed by the Frege-axioms of 1879:

Reflexivity : ` a = a ,

Substitutivity : `
(
a = b ∧ ϕ(a)

)
−→ ϕ(b) ,

(25)

where ϕ(·) is a sentence-variable of L=
QM having one free variable (the superscript ‘=’

expresses that identity is primitive). On the basis of the Frege-axioms only, one proves

that ‘=’ is an equivalence-relation, that it is determined up to logical equivalence (iff),

and that it implies ‘L=
QM-indiscernibility’, on which we briefly elaborate next.

Let M be some monadic predicate of LQM, primitive or defined (where ‘LQM’ now

indicates that we leave it undetermined whether identity belongs to its lexicon). Then we

say that two physical systems a and b are M -indiscernible iff M either holds for both of

them or it does not hold for both of them:

Ind(a , b; M) iff
(
Ma ←→ Mb

)
. (26)

Now let R be some polyadic predicate of LQM. Then we say that physical systems a and

b are R-indiscernible iff for every position in R:

R · · ·a · · · ←→ R · · · b · · · , (27)
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where the free variables of the resulting open sentences are treated in the normal manner

under deduction. For a dyadic predicate this yields sentences of the following form for

R-indiscernibility:

Ind(a , b;R) iff ∀c(Rac ←→ Rbc) ∧ ∀d(Rda ←→ Rdb) . (28)

We take the condition on the RHS (and nothing less general) as the correct formalization

(in the case of dyadic predicates) of the informal statement ‘two objects have the same

relation R’. Observe, when R is the identity relation =, that physical systems are =-

indiscernible in L=
QM iff they are identical (this is a theorem of logic):

` Ind(a , b; =) ←→ a = b . (29)

Taking the conjunction of all such M - and R-indiscernibility conditions for every

primitive predicate in LQM, we obtain the condition we call lexicon-indiscernibility relative

to LQM and denote it by LexInd(a , b; LQM). Define LQM-indiscernibility of a and b,

denoted as Ind(a , b; LQM), as indiscernibility in the entire language LQM, i.e. iff for any

instantiation of open sentence ϕ(· · · ) and for every position:

ϕ(· · · , a , · · · ) ←→ ϕ(· · · , b, · · · ) . (30)

Evidently LQM-indiscernibility implies lexicon-indiscernibility in LQM; conversely, one

proves by complete induction on the complexity of ϕ(·) that lexicon-indiscernibility im-

plies LQM-indiscernibility. Hence physical systems are lexicon-indiscernible iff they are

LQM-indiscernible.

An immediate corollary of Substitutivity (25) is that identical physical systems are

LQM-indiscernible — the indiscernibility of identicals, aka Leibniz’s Law. The converse

fails: from the assumption that every instantiation of the indiscernibility schema (30)

holds for a and b, provided the instantiation never includes identity between physical

systems, one cannot deduce that a and b are identical. That is to say, employing the

notation L6=QM (for the language L=
QM with identity deleted):

LexInd(a , b; L6=QM) −→ a = b . (31)

is not a logical theorem in language L=
QM. Is sentence (31) perhaps a correct formulation

of PII in LQM?

No way. Far too weak. In qm, PII should say that physically indiscernible physical

systems are identical:

PhysInd(a , b) −→ a = b , (32)
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where PhysInd involves a subset of the primitive predicates of L6=QM — the full language L6=QM

(and a fortiori L=
QM) may well sanction mathematical distinctions without any physical

meaning (cf. the next Section). The weaker the sufficient condition PhysInd, the stronger

PII in qm (32). Obviously, (32) is not a theorem of logic either. From now on by ‘PII in

qm’ we mean (32). But of course its converse — the physical indiscernibility of identical

physical systems — remains an instance of Leibniz’s Law, and hence is a logical theorem

regardless of the choice of PhysInd(a , b):

` a = b −→ PhysInd(a , b) . (33)

In the next Section we shall delve into PhysInd(a , b). We close this Section by pointing

out that it is also possible to define identity and that this has some repercussions for

identity, one of which we would like to mention.

As first recognised by Hilbert & Bernays in their Grundlagen der Mathematik [1934,

pp. 380–382], and promulgated and pursued by Quine [1967], identity in any elementary

language can be defined as lexicon-indiscernibility. Quine [1967, pp. 13–14] illustrated the

point by the case of an elementary language with a single primitive dyadic predicate (such

as the language of set-theory, L∈, with the membership-relation ‘∈’ as the only primitive

predicate), where identity thus defined, i.e. as ∈-indiscernibility, is simply seen to obey

the Frege-axioms in L∈. In L6=QM, we then should analogously propound the following

definition of identity:

a = b iff LexInd(a , b; L6=QM) . (34)

So it seems that the choice between primitive identity and defined identity is an

arbitrary convention.

However, defining identity does not come for free. Some of the semantic consequences

arguably are repugnant to reason, like allowing models where two names related by the

identity-relation refer to distinct objects of the meta-theory. But if we were to take this

course, we would be bound to take PhysInd as involving a proper subset of the primitive

predicates of L6=QM — on pain of turning PII into a logical triviality. We want at the very

least the logical possibility of formulating a consistent theory in L6=QM that violates PII (31)

as well as the logical possibility of formulating a consistent theory in L6=QM that obeys PII.

Granted that PhysInd is logically weaker than LexInd(·, · ; L6=QM) — as we shall use it:

enormously weaker — the choice between identity as defined and as primitive becomes

irrelevant for our purposes. Since nothing hangs on it, we simply write ‘LQM’ and allow

the reader to choose.
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4.3 Indiscernibility of Physical Systems

In this section we consider in general terms the nature of PhysInd(·, ·) — equivalently,

of the (proper) subset S of the predicates in LQM denoting the physically meaningful

properties and relations of qm:

Ind(a , b; S) iff PhysInd(a , b) . (35)

Happily, this work has already largely been done in Section 2.4: the latter are clearly

those that figure — or that ought to figure — in the Discernibility Premise (DiscPr, see

Section 3.1). But note that since we claim to prove PII in qm, it is enough that we find

elements in S under which similar particles are discerned, to which end it is enough if we

provide sufficiency conditions for membership in S (and hence for DiscPr) — a criterion of

admissibility. We do not have to define this set S (and DiscPr) outright. In contrast those

who claim to prove that PII fails in qm must provide sufficient and necessary conditions

for properties and relations entering into DiscPr (and prove by exhaustion that no such

property or relation can discern similar particles). Correspondingly, we may base our

analysis on WkPP, a sufficiency condition to count as a possessed property, whereas the

Standard Argument required StrPP, which also provides a necessary (but metaphysically

more heavily loaded) condition.

However, we have already noted that the conditions listed in DiscPr are deficient in an

important respect — the lack of mention of relations other than conditional probabilities.

We propose to add, in addition to (i)–(v) of Section 3.1, (vi) all physically meaningful rela-

tions. Iff the definition of a relation involves probability, we call the relation probabilistic,

otherwise categorical. We should then, more finely, also add to (i)–(ii) of CatDiscPr (vi.a)

all physically meaningful categorical relations, and to (iii)–(v) of ProbDiscPr (vi.b) all

physically meaningful probabilistic relations. Among the former, naturally, are relations

among constituents of S as defined by properties (ii) of S, as sanctioned by StrPP or

WkPP.

Of course, it is open to proponents of the currently dominant view to reject these

extensions of CatDiscPr and ProbDiscPr, and hold on to those listed earlier (Section 3.1).

But the move will be ad hoc, failing some principled rejection of relations, for the relations

we shall appeal to (at least in the categorical case) have an uncontroversial physical

meaning, as we shall see in the next Section.

When we are agreed to this enlargement of the set of relations permitted in DiscPr

(and hence the set of predicates S that defines PhysInd)), forced as it is by purely logi-

cal considerations, and given that we are seeking only sufficiency conditions (criteria of

admissibility), we should add as many restrictions to them as possible. And here there
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is an important worry when it comes to probabilistic relations — and properties. That

is, whilst, at least at first sight, properties and relations among constituents sanctioned

by WKPP are surely admissible — i.e. those entering in CatDiscPr — those entering in

ProbDisPr, sanctioned by the Probability Postulate, just as clearly involve the question

of just what quantum probabilities really are — and thereby propels us back to central

interpretative problems of quantum physics, among them the problem of measurement.

The status of the Projection Postulate is a case in point. (For a recent introduction to

the problem of measurement, see Saunders [2008].)

The more careful of those who appeal to this class of properties and relations have

recognized the difficulty — but since their goal, typically, is to prove that PII fails in

qm, they have erred on the side of liberalism. Thus French & Redhead [1986 p. 239]

stipulate that the probabilities in question should simply be divorced from the question of

measurement — but then they are still to be considered meaningful “while recognizing that

these attributes can never be observed”. But from our point of view, so much liberalism

makes no sense at all. Given that the notion of probability only enters into quantum

mechanics when measurements are performed — only with the use of the measurement

postulates — the suggestion that quantum probability can be divorced from the context

of measurement is a hostage to fortune. We are looking for the strongest constraints

possible on S; we should avoid appeal to probabilistic properties and relations in PhysInd

altogether. Our caution in this respect has already been flagged in our distinction between

categorical and probabilistic discernibility.

In the same spirit, even when it comes to categorical physical properties and relations

licensed by WkPP, we should be circumspect; and other kinds of categorical properties

and relations not underwritten by this postulate are doubly problematic. We state two

general requirements.

Requirement 1 (Req1). Relations (and properties) in S should have a transparent

physical meaning. There are lots and lots of predicates in LQM wherein physical system-

variables occur but these predicates do not express any physical property or physical

relation. For example, predicates expressing membership, or non-membership, of a or

b in sets such as ℵ0 (‘a ∈ ℵ0 ∨ b ∈ ℵ0’), in {iω,a , b} and {a , b, 2008, 2009, 2010},
surely are physically meaningless. Such predicates are not permitted to occur in S, and

in PhysInd(a , b), as discerning predicates.

Name and labeling predicates, such as ‘the label of particle a is 3’, are physically

meaningless and should not discern (Req1). For example, in the case of Black’s two spheres

a name predicate like ‘a = Castor’ is forbidden as the monadic predicate that discerns the

spheres absolutely. This is not to say that names and labels are not permitted to occur

in LQM. We can name and label particles harmlessly yet still talk meaningfully about
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identical but differently labeled particles (namely when they are physically indiscernible),

e.g. 〈a , 1〉 and 〈a , 2〉 (single particle a clumsily carrying two different labels); and about

different but identically labeled particles, e.g. 〈a , 1〉 and 〈b, 1〉 (a single label clumsily

labeling two different particles a and b).

In fact, it is a ‘mathematical necessity’ that the members of every set of particles

can be labeled in the following sense — we define, for the present purposes, a sentence

of LQM to be a mathematical necessity iff it is a theorem of ZFC. A proper labeling of

the members of an arbitrary set X is a bijection from X to its demonstrably unique

cardinal number #X, which by definition is the smallest ordinal equinumerous to X.

The finite Von Neumann-ordinals are identified as the natural numbers (N); they coincide

demonstrably with the finite cardinals. Equinumerosity between X and #X is defined as

the existence of a bijection from X to #X, say ` : X�� #X. This bijection `, whose

existence one proves in ZFC, is the labeling of the members of X, for it assigns to every

member a ∈ X a unique ordinal number `(a). If X is finite, so that #X ∈ N, then

#X = {0, 1, 2, . . . ,#X − 1}; the labels then can achieve the status of logical proper

names. (If X is non-denumerably infinite, then this cannot be achieved because L∈, and

LQM for that matter, are finitary languages and therefore harbour at most a denumerable

infinitude of Russellian definite descriptions that can licence the introduction of defined

logical proper names.)

Redhead & Teller [1992] considered ‘the capability of particles to be labeled’ and called

this capability Labeling Primitive Thisness (LabelPT). Well, we have just sketched the

proof of the theorem saying that the members of every set in the domain of discourse of

LQM can be labeled:

ZFC ` ∀X : LabelPT(X) , (36)

where this monadic predicate is defined in LQM as follows:

LabelPT(X) iff ∃ ` ⊆ X ×#X
(
∀A ∈ X, ∃!m ∈ #X : 〈A,m〉 ∈ `

∧ ∀m ∈ #X, ∃!A ∈ X : 〈A,m〉 ∈ `
)
.

(37)

Then it is a mathematical necessity that every particle in a finite set of particles can be

properly named and formally distinguished by its name.

Redhead & Teller [1992] argued, however, that standardly qm ‘adopts’ LabelPT but

that qm really should reject LabelPT (37). But since it is a mathematical necessity that

every set of (similar) particles (bosons, fermions, and what have you) can be labeled

(36), their requirement to have a version of qm that rejects LabelPT is to require an

inconsistent version of qm. We prefer our quantum mechanics consistent.
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Redhead & Teller [1992] further claim that ‘the Fock-space formalism’ is a way to

reject LabelPT. This is obviously an error of thought, because ‘the Fock-space formalism’

is part of (or else reducible to) ZFC and by mathematical necessity compatible with the

labeling theorem (36).

We remain, with qm and Fock’s formalism, safely within the confines of ZFC and

classical elementary predicate logic and are not bothered by LabelPT (36) in the least:

labeling is harmless because physically meaningless, labels can be used in the statement

of PhysInd(a , b) but labeling predicates — such as ‘a has label 1’ — are not themselves

permissible: they are not in S. They are obviously physically suspect — how do you

measure them? — nor are they licensed by WkPP. Indeed, if they are properties, albeit

properties that cannot be defined in terms of self-adjoint operators, they are not invariant

under permutations. This brings us to the second requirement.

Requirement 2 (Req2). As discussed in Section 2.2, the states and operators ordinarily

used to describe similar particles are invariably symmetrized (states) or symmetric (op-

erators) — by the Symmetrisation Postulate. We elevate this to the general requirement:

properties and relations by which similar particles can be discerned must be invariant

under permutations of particles. Indeed, they should be permutation invariant if they are

to have a physical meaning insofar as permutations are symmetries of the physical system.

For relations, this means that only totally symmetric predicates are permitted in S. For

properties, any property of one particle should be a property of any other — a system

of particles invariant under permutations must be absolutely indiscernible. From this it

follows that any symmetric binary predicate in S must be either reflexive or irreflexive.

We consider it instructive to compare Req2 with a similar one in the celebrated case of

the twin black spheres. In an exciting dialogue between two persons unexcitingly named

‘A’ and ‘B’, Max Black [1952, p. 156] envisioned what seems a logically possible world

consisting of empty space-time with only two identical black spheres of radius 1 dm say,

their centers located at a distance of 1 km from each other. Some traveler baptised the

spheres ‘Castor’ and ‘Pollux’ and then disappeared in order not to destroy the spatial

symmetry of this world. Let ‘a ’ and ‘b’ be sphere-variables running over the set {Castor,

Pollux}. This situation seems to contradict that PII is true in all logically possible worlds,

so that PII cannot be a necessary or an a priori or a conceptual or an analytic truth.

At some point during the dialogue, it is thought that the property of being in a given

region of space, or having such-and-such coordinates, might suffice to specify a property

that the one sphere has that the other lacks — the suggestion first made by Kant. But

properties like these do not respect the physical symmetries of Euclidean space, and so are

to be rejected. Similarly, properties of particles in quantum mechanics that do not respect

permutation symmetry are to be rejected. Only invariant properties and relations (under
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the symmetries present in the case in question) are admissible. (For further elaboration

on the admissability of predicates in terms of invariance, see Saunders [2003a].)

For the sake of future reference, we list the Requirements on quantum-mechanical

properties and relations in summary fashion.

(Req1) Physical meaning. All properties and relations should be transparently

defined in terms of physical states and operators that correspond to physical mag-

nitudes, as in WkPP, in order for the properties and relations to be physically

meaningful.

(Req2) Permutation invariance. Any property of one particle is a property of any

other; relations should be permutation-invariant, so binary relations are symmetric

and either reflexive or irreflexive.

We say that a relation is physically admissible iff it satisfies both these requirements,

and similarly for properties.

With these requirements in position, we are almost prepared for the hunt for admissible

relations that discern — almost, because rigour demands that we first delve a bit into the

various kinds of discernibility.

4.4 Some Kinds of Discernibility

In qm, identity of physical objects a and b can succeed in exactly one way: if the sufficient

condition PhysInd(a , b) for identity is met (32). Identity of a and b can fail in many

ways: in principle every property and relation included in PhysInd(a , b) has the ability

to discern a and b. We rehearse a few kinds of discernibility from Section 1 rigorously

and add a few new ones.

We call physical objects a and b absolutely discernible, or distinguishable, iff there is

some property expressed in LQM by monadic predicate M included in PhysInd(a , b), such

that they are M -discernible:

Ma ∧ ¬Mb or ¬Ma ∧ Mb . (38)

We call physical objects a and b relationally discernible iff there is some relation expressed

by a polyadic predicate in LQM included in PhysInd(a , b) that discerns them. We shall

restrict ourselves to binary relations, so that relational discernibility is achieved iff we

find some dyadic predicate, R say, such that ¬Ind(a , b;R)(28) holds, which is logically

equivalent to:

∃ c
(
(Rac ∧ ¬Rbc) ∨ (Rbc ∧ ¬Rac)

)
∨

∃d
(
(Rda ∧ ¬Rdb) ∨ (Rdb ∧ ¬Rda)

)
.

(39)
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Suppose we only have two particles, labeled (named) ‘1 ’ and ‘2 ’, and suppose, for ease,

that a and b are particle-variables running over the set P2 ≡ {1 ,2}. In this case there

are prima facie 24 = 16 logically distinct binary relations.

Quine [1981, pp. 129–133] was the first to inquire into different kinds of discernibility

(‘grades of discriminability’ in his words); he discovered there are only two independent

logical categories of relational discernibility (by means of a binary relation): either the

relation is irreflexive and asymmetric, in which case we speak of relative discernibility, or

the relation is irreflexive and symmetric, in which case we speak of weak discernibility.

We notice that if relation R discerns particles 1 and 2 relatively, then its complement

relation, defined as ¬Rab, is reflexive and also asymmetric; and if R discerns particles 1

and 2 weakly, then its complement relation ¬R is reflexive and symmetric but does not

hold for a 6= b whenever R holds for a 6= b. This generalises to any set PN of N > 2

particles.

Evidently absolute discernibles are always weak discernibles, because if (38) holds,

then the following relation RM discerns weakly:

RMab iff (Ma ∧ ¬Mb) ∨ (¬Ma ∧ Mb) . (40)

The requirement of permutation-invariance (Req2) has three implications, which we

mention in turn.

1◦. Absolute discernibility is not on and therefore only relational discernibility is

possible.

2◦. Relative discernibility is not on and therefore the only kind of relational discerni-

bility left is weak discernibility. Hence the only quantum-mechanical possibility for similar

elementary particles to be discernible is to be weakly discernible.

3◦. Only two sorts of relations are permitted, which both belong to the same logical

category of (2◦) weak indiscernibility (they can be defined in terms of each other without

using identity and only using negation, as in the previous paragraph): an irreflexive

symmetric relation, say R, that holds between all non-identical particles,

(∀a ∈ PN : ¬Raa) ∧ (∀a , b ∈ PN : a 6= b −→ Rab) , (41)

and a reflexive symmetric relation, say R′, that does not hold between all non-identical

particles:

(∀a ∈ PN : R′aa) ∧ (∀a , b ∈ PN : a 6= b −→ ¬R′ab) , (42)

In each of these cases, (39) holds, and thus the two particles are discerned weakly and

therefore relationally.
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We end this Section with a few examples of relationals. Black’s spheres Castor and

Pollux are discerned weakly by the reflexive relation ‘has no distance from’, which does not

relate Castor and Pollux, and by irreflexive relation ‘has a positive distance from’, which

does relate Castor to Pollux; cf. Saunders [2006a]. Notice that distances are Euclidean-

invariant. The same relations discern points in every n-dimensional Euclidean space

weakly (Rn). Similarly, points in Galilean and Minkowskian space-time are weakly dis-

cernible. In the General Theory of Relativity, in all sorts of semi-Riemannian space-times,

space-time points can generally be discerned absolutely by the value of the various ten-

sors at those points, provided the tensor fields lack global symmetries, otherwise they are

weak discernibles. Most ordinal numbers in set-theory are weakly discernible, because L∈

has no more than ℵ0 monadic predicates that can in principle discern absolutely, whereas

there are far more ordinal numbers; and the same holds for all sets: ‘not every set can

have a name’. The imaginary numbers i and −i are weakly discernible, because monadic

predicates that discern them absolutely, such as ‘Im(w) > 0’, are not invariant under

the automorphisms of the structure C and therefore forbidden (w 7→ w and w 7→ w∗ are

the only two); see Ladyman [2005]. Relatively but not absolutely discernible are instants

of time in Galilean space-time: ‘t is earlier than t′’ is an irreflexive relation that holds

between every two non-identical instants: if t 6= t′, then either t < t′ or t′ < t. (For

further discussion, see Saunders [2003b].)

5 Discerning Elementary Particles

5.1 Preamble

We first consider the following Question: how many particles does a given composite

physical system of particles comprise? In qm, to specify a composite physical system

includes to specify the number of its constituent parts when we want to consider those.

One needs to specify this in order to specify how many factors the direct-product Hilbert-

space of the composite system must have (State Postulate). Without specifying this

number, or reading it off from the specified Hamiltonian say, the entire process of building

some qm-model of the system cannot even begin. In classical mechanics, where the phase

space R6N is fixed ab ovo, the situation is exactly the same. (Another point of similarity

is that the number of particles cannot change, which is different for the theory of the next

paragraph.)

As soon as we leave qm and enter (relativistic) quantum field theory (qft), the Ques-

tion above becomes both interpretation- and context-dependent, because the fundamental

ontological substance of qft is, as the name says, the quantum field and not the mate-
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rial particle (see Saunders [1996]). When the concept of a particle needs no longer be

expressed in the language of the theory, there may be no answer to the Question of

how many particles there are. Nonetheless physicists talk about particles all the time in

the context of the Standard Model of elementary particles and their interactions, which

Model is formulated in the framework of qft. Physicists are either up to their necks in

a conceptual muddle or they must make do with some diluted particle-interpretation of

quantum fields of the sort considered by Clifton [2004, Chapter III] and Wallace [2006].

One answer to the Question, then, is that it is a pragmatic affair whether there are par-

ticles, depending on the energy regime and scale considered (see Wallace [2006]). In this

context- and scale-dependent sense, we expect the methods we develop here to apply to

relativistic particle talk as well. And if we were to put up shop in qft, we could raise the

question whether PII can be applied to the quantum fields themselves and ask whether

quantum fields are physically discernible. The answer is surely in the affirmative; and

that also the modes of a quantum field are physically discernible. In this application,

indeed, no one has ever so much as considered a violation of PII: that there should be

two or more qualitatively identical fields, exactly alike in all physical respects, with no

possible coupling between them. Enough of this and back to qm, where the concept of a

particle is comparatively much simpler than in relativistic qft.

Let us define, in the current context of qm, that for the particles 1 and 2 to be (weak,

relative) relational discernibles, to be relationals, they must be indiscernible by any admis-

sible property but be (weakly, relatively) discernible by some admissible relation in every

admissible physical state of the composite system of which they are part. We call 1 and 2

indiscernibles iff in every admissible state they are not discernible, neither absolutely nor

relationally. Hence particles that are discernible in some states and indiscernible in other

states are neither indiscernibles nor discernibles; their possible discernibility becomes a

state-dependent and hence entirely contingent matter. When we recall that relative dis-

cernibility is not on in qm for similar particles (see Section 4.4), the only way left to

discern the particles relationally is to discern them weakly.

5.2 Fermions

Theorem 1 (QM−) In a composite physical system of a finite number of similar

fermions, according to QM− all fermions are categorically weakly discernible in every

admissible physical state, pure and mixed, for all finite-dimensional Hilbert-spaces; in

short, fermions are categorical weak discernibles.

Proof. We consider a composite system SN of N > 2 similar fermions; H is the 1-

particle Hilbert-space having dimension d > 2; HN is the N -fold direct-product-space
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(5); Sfd(HN) is the set of fd-symmetric and hence admissible states of SN . We have a set

of N particles, {1 ,2 , . . . ,N }, over which the particle-variables a and b run. We prove

Theorem 1 step-wise.

[S1] Auxiliary lemma.

[S2] Case for N = 2, d > 2, pure states.

[S3] Case for N = 2, d > 2, mixed states.

[S4] Auxiliary lemma.

[S5] Case for N > 2, d > 2, pure states.

[S6] Case for N > 2, d > 2, mixed states.

The auxiliary Lemma 1 will provide a sufficient condition for categorical weak dis-

cernibility, for arbitrary finite dimension of H and all admissable states, mixed and pure,

for N = 2. In steps [S2]–[S3] we show that this condition can be met in each of the

mentioned cases. Then we indicate how to extend this all to N > 2 in steps [S4]–[S6].

[S1] Let |φ1〉, |φ2〉, . . . , |φd〉 ∈ H be an eigenbasis of H belonging to operator A, acting

in H, which we assume to correspond to some physical magnitude A and thus has a clear

physical meaning. Let Pm be the 1-dimensional projector on the ray to which eigenstate

|φm〉 of A belongs; let Plm ≡ Pl − Pm and let

P
(1 )
lm ≡ Plm ⊗ 1 and P

(2 )
lm ≡ 1 ⊗ Plm . (43)

Consider the following family of categorical relations:

Rt(a , b) iff
d∑

l,m=1

P
(a)
lm P

(b)
lm W = tW , (44)

where each relation is characterised by a value of parameter t ∈ R.

When the projectors under consideration belong to the spectral family of magnitude-

operator A, assumed to be physically meaningful, they are themselves physically mean-

ingful; by the WkPP, when the system is in the state W , so is relation Rt, which is defined

in terms of them (Req1). Due to the fact that operators (43) commute and that the com-

mutator is linear, relation Rt is symmetric, independent of the value of parameter t; below

we shall see that for certain values of t, relation Rt is reflexive, and for others irreflexive;

for these values relation Rt is then permutation-invariant (Req2). Conclusion: relation Rt

(44) meets the two Requirements (end of Section 4.3) and is therefore admissible.

Lemma 1 (QM−) If state operator W ∈ S(H ⊗ H), d = dimH, is an eigenstate of

both

d∑
l,m=1

P
(a)
lm P

(b)
lm (a 6= b) and

d∑
l,m=1

P
(a)2

lm (45)
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but having different eigenvalues, λ, µ ∈ R respectively, then in QM− the particles are

categorically weakly discernible in that state W by relation Rµ as well as by Rλ (44). For

pure states |Ψ〉 ∈ H ⊗H, the sufficient condition is:

d∑
l,m=1

P
(a)
lm P

(b)
lm |Ψ〉 = λ|Ψ〉 6= µ|Ψ〉 =

d∑
l,m=1

P
(a)2

lm |Ψ〉 . (46)

Proof. By assumption we have that state W is an eigenstate (18) of the two operators

(45) having eigenvalues λ and µ 6= λ. By the Weak Property Postulate of QM− (WkPP,

Section 2.4), the composite system then possesses quantitative physical properties〈 d∑
l,m=1

P
(a)
lm P

(b)
lm , λ

〉
and

〈 d∑
l,m=1

P
(a)2

lm , µ
〉
, (47)

and then by virtue of SemC (20) it does not possess properties〈 d∑
l,m=1

P
(a)
lm P

(b)
lm , µ

〉
and

〈 d∑
l,m=1

P
(a)2

lm , λ
〉
. (48)

Relation Rλ is irreflexive (choice t = λ), because

d∑
l,m=1

P
(a)2

lm W 6= λW ,

and the composite system does not have the associated property (48), so that particle

1 is not related to itself by Rλ (similarly for a = b = 2 ). In order for Rλ to discern

the particles weakly, we next need to verify that Rλ(a , b) holds for a 6= b. We have by

assumption that

d∑
l,m=1

P
(a)
lm P

(b)
lm W = λW .

In combination with the fact that properties (47) are possessed properties of the composite

system, we conclude that 1 and 2 are indeed related by Rλ (44).

For choice t = µ, relation Rµ (44) is reflexive, symmetric and does not hold for a 6= b.

Either way, t = λ or t = µ, relation Rt (44) categorically discerns the particles weakly in

state W . Q.e.d.

[S2] Case for N = 2, d > 2, pure states. Using equalities:

Plm|φn〉 = δln|φl〉 − δmn|φm〉 ,

P 2
lm|φn〉 = δln|φl〉+ δmn|φm〉 − 2δlmδmn|φl〉 ,

(49)
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and for an arbitrary state |Ψ〉 ∈ H ⊗H, the expansion

|Ψ〉 =
d∑

n,i=1

cni|φn〉 ⊗ |φi〉 , (50)

one shows that for a 6= b:

d∑
l,m=1

P
(a)
lm P

(b)
lm |Ψ〉 = 2d

d∑
m=1

cmm|φm〉 ⊗ |φm〉 − 2|Ψ〉 , (51)

and for a = b:

d∑
l,m=1

P
(a)2

lm |Ψ〉 = 2(d− 1)|Ψ〉 . (52)

Looking at expansion (50), |Ψ〉 is fd-symmetric iff cni = −cin, which implies that cnn = 0

for every n (the Paulian character of fd-states). This means that the first sum of terms

at the right-hand-side of equality (51) vanishes:

d∑
l,m=1

P
(a)
lm P

(b)
lm |Ψ

fd〉 = −2|Ψfd〉 . (53)

Hence for choices λ = 2(d − 1) and µ = −2 sufficient condition (46) of Lemma 1 has

been met for all pure fd-states and we may conclude that the fermions are categorically

weakly discernible.

[S3] Case for N = 2, d > 2, mixed states. Equations (51) and (52) can also be written

as equations for fd-symmetric projectors:

d∑
l,m=1

P
(a)
lm P

(b)
lm |Ψ

fd〉〈Ψfd| = − 2|Ψfd〉〈Ψfd| , (54)

and

d∑
l,m=1

P
(a)2

lm |Ψ
fd〉〈Ψfd| = 2(d− 1)|Ψfd〉〈Ψfd| . (55)

Due to the linearity of the operators, these equations remain valid for arbitrary linear

combinations of fd-symmetric projectors. This includes all convex combinations of fd-

symmetric projectors, which exhausts the set Sfd(H⊗H) of all fd-symmetric mixed states.

Hence for choices λ = 2(d− 1) and µ = −2 the sufficient condition (45) of Lemma 1 has

been met for all mixed fd-states.
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[S4]–[S6] The proofs for these cases proceed exactly analogous to the ones above for

[S1]–[S3], using the same Lemma 1, and we therefore do not spell them out. A few remarks

nonetheless, if only for the sake of clarity.

Rather than operators (43), one now considers the following N -factor operators, which

act in HN

P
(j )
lm ≡ 1 ⊗ · · · ⊗ 1 ⊗ Plm ⊗ 1 ⊗ · · · ⊗ 1 , (56)

where Plm is the j-th factor and j a particle-variable running over the set of N labeled

particles; and rather than expansion (50), one now uses the expansion for |Ψ〉 ∈ HN :

|Ψ〉 =
d∑

n1,...,nN=1

c(n1, n2, . . . , nN)|φn1〉 ⊗ |φn2〉 ⊗ · · · ⊗ |φnN
〉 . (57)

Thus one arrives at the same equations (52) and (53). Discerning the fermions in these

pure cases is realised by the same relations, Rµ and Rλ (44). Henceforth we arrive at the

same conclusion for the mixed states. Q.e.d.

The attentive reader will have noticed that we have assumed, not proved, that the

family of orthogonal projectors we have used in the proof above give rise to a physically

meaningful relation. If there is some maximal operator A (self-adjoint, positive, normal)

that corresponds to a physical magnitude A, then we are home. The associated projectors

correspond to so-called yes/no experiments — a lesson that quantum logic has taught us

— which makes their physical meaning evident. The possibility that there is no operator

of the mentioned kinds corresponding to a physical magnitude is an outré possibility, for

in that case we would have a physical system that defies quantum-mechanical modeling!

We can therefore safely ignore this; we only want to — and actually only can — prove

theorems in qm about physical systems that lie within the scope of qm. Furthermore, in

the examples below the physical meaning of the relations will be as transparent as a good

cleaned window-glass.

We present two simple examples for two fermions having spin }/2, H = C2, so N = 2

and d = 2. There is only a single admissible pure state (and therefore no admissible mixed

states), which is the (unit ray of the) fd-symmetric singlet-state:

|singlet〉 ≡ 1√
2

(
|z+〉 ⊗ |z−〉 − |z−〉 ⊗ |z+〉

)
. (58)

Example 1. Consider Pauli spin-operator σz. Operator σz is the difference of the two

z-spin-projectors |z+〉〈z+| and |z−〉〈z−|:

σ
(1 )
z =

(
|z+〉〈z+| − |z−〉〈z−|

)
⊗ 1 = σz ⊗ 1

σ
(2 )
z = 1 ⊗

(
|z+〉〈z+| − |z−〉〈z−|

)
= 1 ⊗ σz .

(59)
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Then σ
(1 )
z |Ψ〉 = −σ(2 )

z |Ψ〉. Although the singlet-state (58) is neither an eigenstate of

σ
(1 )
z nor of σ

(2 )
z , it is an eigenstate of σz ⊗ σz and of σ2

z ⊗ 1 (and of 1 ⊗ σ2
z), but with

different eigenvalues, −2 and +2 = 2(d− 1), respectively. Relation

Zt(a , b) iff 2σ(a)
z σ(b)

z |singlet〉 = t|singlet〉 , (60)

which meets Requirements 1 and 2 (p. 29), discerns the particles weakly and categori-

cally for both t = −2 and t = +2. Relation Z−2 is the one in footnote 5 of Saunders

[2003, p. 294]: “has opposite direction of each component of spin to”. The relative direc-

tion of components of spin may be well-defined, whether or not the directions of those

components are themselves defined, just as the relative distances of bodies may be well-

defined, whether or not bodies have absolute positions (see Saunders [2006a] for further

discussion).

Example 2. This example is not an instance of Theorem 1 but really a different

theorem. Consider the following symmetric ‘Total-spin relation’ (in units of }2/2):

T(a , b) iff
(
σ(a) + σ(b)

)2 |singlet〉 = 12 |singlet〉 , (61)

where

σ(1 ) = (σx + σy + σz)⊗ 1 and σ(2 ) = 1 ⊗ (σx + σy + σz) . (62)

Relation T (61) discerns the two fermions weakly and categorically, as we shall demon-

strate.

For a 6= b, the singlet-state is an eigenstate of σ(1 ) +σ(2 ) having eigenvalue 0, because

of the perfect anti-correlation of the singlet-state. Then the singlet is also an eigenstate

of the operator in the definiens of relation T (61), which is the total spin-operator, having

eigenvalue 0. But

0 |singlet〉 6= 12 |singlet〉 ,

so relation T (61) fails for a 6= b.

For a = b, we obtain the spin-magnitude operator of particle a :(
σ(a) + σ(a)

)2 |singlet〉 = 22(1 ⊗ 1 + 1 ⊗ 1 + 1 ⊗ 1 )|singlet〉 = 12 |singlet〉 , (63)

which shows that T is reflexive. Therefore total-spin-relation T (61) discerns the two

fermions weakly. Since no probability measures occur in the definiens of T, it discerns

the fermions categorically. Obviously relation T meets Requirements 1 and 2. This

completes the demonstration.
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The more general anti-correlations used in the proof of Theorem 1 concern, not com-

ponents of spin, but values of any magnitude-operator A. (Note that A can be chosen

independent of the state W .) As such these relations clearly belong to PhysInd. Less clear

is the probabilistic analogue, defined in terms of their expectation values. In this case we

speak of probabilistic discernibility.

Theorem 2 (QM−, ProbP) In a composite physical system of a finite number of

similar fermions, then in QM− supplemented with ProbP, all fermions are probabilistically

weakly discernible in every admissible physical state, pure and mixed, for every finite-

dimensional Hilbert-space; in short, fermions are probabilistic weak discernibles.

Proof. The proof is as the proof of Theorem 1, but replacing the categorical relations

with probabilistic relations, defined in terms of expectation values:

St(a , b) iff Tr

(
d∑

l,m=1

P
(a)
lm P

(b)
lm W

)
= t , (64)

where t ∈ R. The auxiliary lemma is now:

Lemma 2 (QM−, ProbP) If for state operator W ∈ S(H⊗H) we have

Tr

(
d∑

l,m=1

P
(a)
lm P

(b)
lmW

)
6= Tr

(
d∑

l,m=1

P
(a)2

lm W

)
, (65)

then the particles are probabilistically weakly discernible in that state W by relations St
(64) for the following values of parameter t:

Tr

(
d∑

l,m=1

P
(a)
lm P

(b)
lmW

)
and Tr

(
d∑

l,m=1

P
(a)2

lm W

)
. (66)

For pure states |Ψ〉 ∈ H ⊗H, the sufficient condition (65) becomes:

〈Ψ|

(
d∑

l,m=1

P
(a)
lm P

(b)
lm

)
|Ψ〉 6= 〈Ψ|

(
d∑

l,m=1

P
(a)2

lm

)
|Ψ〉 . (67)

The proof of Lemma 2 is a simplified version of the proof of Lemma 1, which we do

not spell out. From equations (52) and (53), we immediately deduce that the sufficient

condition (67) of Lemma 2 has been met for all fd-states. And mutatis mutandis for the

mixed states. Q.e.d.

To complete the analysis, it is necessary to consider infinite-dimensional Hilbert-

spaces, but here there is a difficulty. The constructive part of the above proofs — the

existence of the discerning relations for arbitrary A — do not extend to Hilbert-spaces of

infinite-dimension: the series in (51) and (52) diverge for d =∞. But we doubt that this

difficulty reflects any fundamental limitation. We therefore state as a conjecture:
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Conjecture 1 Like Theorems 1 and 2 for infinite-dimensional Hilbert-spaces.

Note that for the proof of Conjecture 1 it would be enough, in view of Lemma 1, to

come up, for any state |Ψ〉 ∈ H, with some physically admissible 1-particle operator A

(which therefore would occur in PhysInd) such that:

(A⊗ A)|Ψ〉 = λ|Ψ〉 6= µΨ = 1
2(1 ⊗ A2 + A2 ⊗ 1 )|Ψ〉 . (68)

So much for fermions. For bosons, i.e. particles in be-states, things turn out to be

more intricate.

5.3 Bosons

Theorem 1 hinged on the existence of anti-correlations among eigenvalues of A, for any

maximal 1-particle magnitude-operator in PhysInd, for every fd-symmetric state |Ψ〉; but

these anti-correlations are independent of the alternating sign in the expansion of |Ψ〉 in

terms of eigenvectors of A, i.e. the proof goes through unaltered given only that cnn = 0

in eq. (50). Of course this is no longer forced in the case of bosons; nevertheless, the fact

remains that there are infinitely-many boson states in which particles are categorically

discerned by relations of the form already considered.

For example, in every state W ∈ Ssym(HN) that is a convex sum of Paulian states (12)

in the eigenbasis of some 1-particle magnitude-operator A, the N similar bosons can be

discerned weakly and categorically for every finite-dimensional Hilbert-space, by exactly

the same relations that we used to discern the N fermions! This is immediate from the

proof of Theorem 1: see equation (52) and the text following it. Therefore the bosons are

also probabilistically discernible in these states. An example of such a state for N = 2

and H = C2 is the be-symmetric state displaying perfect anti-correlation:

1√
2

(
|z+〉 ⊗ |z−〉+ |z−〉 ⊗ |z+〉

)
. (69)

Two bosons (N = 2) in a direct-product state of two identical 1-particle states, e.g.

|z+〉 ⊗ |z+〉 ∈ H ⊗ H (each boson then is in the same pure state |z+〉), can however not

be categorically discerned by means of the relations we are considering in this paper. The

states do not seem to contain any clue for discerning the bosons, not even weakly; in these

states, they seem indiscernible.

The conclusion of these considerations is that whether similar bosons, i.e. particles in

be-symmetric states, are weakly discernible or indiscernible depends on the state of the

composite system. Their discernibility becomes a contingent matter.

One can suppose, indeed, that the condition on the expansion-coefficients cml (for

N = 2) may be dynamically enforced under some Hamiltonian H — that product-states
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of the form |φm〉 ⊗ |φm〉, m = 1, . . . , d — may be inherently unstable. In that case, for

sufficiently large times t, one would conclude, for evolution-operator U(t) = exp(iHt/}),

that the bosons in the state |Ψ(t)〉 = U(t)|Ψ(0)〉 will be categorically discerned by Rλ.

But this implies that the relation:

R◦λ(a , b) iff U inv(t)
( d∑
l,m=1

P
(a)
lm P

(b)
lm

)
U(t)|Ψ(0)〉 = λ|Ψ(0)〉 (70)

categorically discerns the bosons already at t = 0!

How was this trick accomplished? Evidently, one has successfully (weakly, categori-

cally) discerned the orbits of the states of the two bosons — orbits defined over sufficiently

large times for them eventually to contain no component of the form |φm〉 ⊗ |φm〉. Well

and good, if the particles are in fact subject to such a dynamics, with evolution U .

There lies the rub: the operator acting on |Ψ(0)〉 on the right-hand-side of eq. (70)

is self-adjoint and symmetrised — why not count R◦λ in PhysInd? Indeed we may, if

physically interpreted, in accordance with the real dynamics and the real physical relations

that eventually obtain among physical quantities. Mere self-adjointness is an insufficient

condition for that.

There remains, however, the possibility that bosons can always be probabilistically

discerned. Probabilistic discernibility, as we have seen, was an automatic consequence of

the categorical discernibility of fermions (replacing eigenvalues with expectation-values):

it is surely a weaker condition. Indeed, on replacing eqs. (68) with the single probabilistic

condition:

〈Ψ|A⊗ A|Ψ〉 6= 1
2〈Ψ|1 ⊗ A

2 + A2 ⊗ 1 |Ψ〉 (71)

we see that for the problematic case of a direct-product-state of the form |φ〉⊗|φ〉 ∈ H⊗H,

we obtain for inequality (71):

〈φ|A|φ〉2 6= 〈φ|A2|φ〉 . (72)

In terms of the usual expression of the standard deviation in LQM

∆φA =
√
〈φ|A|φ〉2 − 〈φ|A2|φ〉 , (73)

ineq. (72) is just the condition that ∆φA > 0 — the requirement that A is not dispersion-

free in state |φ〉. This condition is never satisfied whenever |φ〉 is an eigenstate of A, as

would be required were probabilistic discernibility in this state, thus defined, to extend

to categorical discernibility.

Evidently product-states are no bar to discernibility by condition (71). It is worth

stating and proving this result in full generality, as applying to bosons as well as fermions in
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Hilbert-spaces of any dimensionality. The proof makes do even without WkPP, removing

the last shred of metaphysics — if it is metaphysics — at the price of free use of quantum

probabilities.

Theorem 3 (QM−, ProbP) Let H ⊗ H be some direct-product Hilbert-space of ar-

bitrary (possibly infinite) dimension associated with a composite system of two simi-

lar particles, then in QM− supplemented with ProbP, if for every every state-operator

W ∈ S(H⊗H) there is some admissible self-adjoint operator A acting in H, correspond-

ing to physical magnitude A, such that

Tr(A⊗ AW ) 6= Tr(A2 ⊗ 1 W ) = Tr(1 ⊗ A2W ) , (74)

then the two particles are probabilistically weakly discernible in that state. Whenever W

is pure, and hence a 1-dimensional projector, and |ψ〉 ∈ H⊗H is a vector in the ray onto

which W projects, sufficient condition (74) becomes:

〈ψ|A⊗ A|ψ〉 6= 〈ψ|A2 ⊗ 1 |ψ〉 = 〈ψ|1 ⊗ A2|ψ〉 . (75)

We shall say that A probabilistically discerns the particles weakly in state W or in |ψ〉.

Proof. Assume the antecedent (74) has been met for state W . We point out that

the second equations in (74) and in (75) are always met, due to eq. (15), which is a

consequence of the Symmetrisation Postulate — we have written this down here again for

the sake of emphasis.

Let us define commuting operators A(1 ) and A(2 ), which act in H⊗H, such that A(1 )

is the operator corresponding to physical magnitude A that pertains to particle 1 , and

mutatis mutandis for A(2 ) and 2 :

A(1 ) = A⊗ 1 and A(2 ) = 1 ⊗ A . (76)

If A is a bounded operator on H, then so is A(1 ) and A(2 ) on H⊗H, and mutatis mutandis

if the domain of A is dense in H, and if A is self-adjoint. We now define the following

family of probabilistic relations (t ∈ R):

Pt(a , b) iff Tr
(
A(a)†A(b)W

)
= t . (77)

By construction, relation Pt (77) is admissible in so far as any probabilistic relations

are admissible: it is clearly permutation-invariant and defined in terms of expectation-

values of self-adjoint operators that are by assumption in PhysInd (Requirements 1 and 2

for admissible relations; listed at the end of Section 4.3).

By assumption some A is given for state W such that inequality (74) holds. Then

relation Pt (77) is fixed when we choose t = ε, where we define ε as follows:

ε ≡ Tr(A⊗ AW ) . (78)
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Then we have, by virtue of definitions (77) and (78):

Pε(1 ,2 ) , Pε(2 ,1 ) , ¬Pε(1 ,1 ) , ¬Pε(2 ,2 ) , (79)

which is an instance of weak discernibility (42): Pε(a , b) is symmetric and irreflexive. If

one assigns value Tr(A2 ⊗ 1 W ) to parameter t rather than value ε (78), one obtains a

reflexive and symmetric relation Pt(a , b) that fails for a 6= b, which is the other case of

weak discernibility (41). Q.e.d.

In the physically realistic case of an infinite-dimensional Hilbert space (i.e. the space of

wave-functions: H = L2(R3)), which hosts a representation of the canonical commutation

relations [P,Q] = −i}1 for linear momentum (P ) and position (Q), it very easily follows

that bosons in product-states

ψ(q)⊗ ψ(q) ∈ L2(R3)⊗ L2(R3) (80)

— the problem case — are probabilistically discernible whatever the state ψ ∈ L2(R3)

is: for no state ψ is dispersion-free for both P and Q. Thus bosons in product states

are probabilistically discernible by their statistical variance for measurements of momen-

tum, or by their statistical variance for measurements of position. To take the case of

momentum: there are two particles, and not one, as there is a difference in the statistics

of outcomes for the product of two momentum measurements on two particles (P ⊗ P ),

from those for the square of a momentum measurement on a single particle (P 2 ⊗ 1 or

1 ⊗ P 2). More generally, for any state

W ∈ S
(
L2(R3)⊗ L2(R3)

)
, (81)

it is not hard to show there exists a self-adjoint operator A satisfying eq. (74): the difficulty

lies in establishing that it also lies in S, and thus can be used in PhysInd. But as with

Conjecture 1, we do not consider this difficulty to be more than a technical one, because

if a physical system can be modeled at all in qm, there will be some magnitude operator

that pertains to it. Certainly this difficulty is insignificant in comparison to the conceptual

question which we anticipated already in Section 4.3 and which is now staring us in the

face: for how are we to conduct these measurements of the product of momenta of two

particles (P ⊗ P ), to compare to measurements of the square of the momentum of one

(P 2 ⊗ 1 ), without already having to hand a method for distinguishing the two? And

doesn’t the question of discernibility now apply to the two particles when coupled to the

measurement apparatus — so do we not need the details of this interaction anyway? Once

we bring ‘measurements’ into the picture then, from the realist perspective that renders

the issue of PII more pressing, the problem of measurement can no longer be ducked. If we
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are seriously to tackle the nature of quantum probability, and bring in the measurement

apparatus, we should work with one or other of the realist solutions to the problem of

measurement — in the non-relativistic case that we have been considering, either pilot-

wave, dynamical collapse, modal interpretations or Everettian quantum mechanics. But

we shall not take up that challenge here.

6 Concluding Discussion

The currently dominant view, according to which PII stands refuted by the quantum-

mechanical description of composite systems of similar fermions (particles in fd-symmetric

states) and similar bosons (particles in be-symmetric states), is directly contradicted by

the theorems of the previous Section, at least as far as fermions in finite-dimensional

Hilbert-spaces are concerned (for infinite-dimensional ones, it is stricto sensu an open

question). Restricted to finite-dimensional Hilbert-spaces, we can conclude that fermions

are weakly categorically discernible; they are categorical discernibles (Theorems 1 and 2);

they are neither individuals nor indiscernibles but categorical relationals. For bosons, it

becomes a state-dependent matter: in most states, bosons can be discerned categorically,

just like fermions, but in other states, notably direct-product states, they arguably can-

not; hence they are neither categorical indiscernibles nor categorical discernibles; they

are, however, probabilistically weakly discernible (as of course are fermions) and hence

probabilistic relationals — whatever precisely that may entail.

The general conclusion with regard to the Leibnizian principles, then, is that PII-R

and hence PII (2) hold in qm, at least in the case of fermions, and that no appeal

to inflationary metaphysics (Postian ‘transcendental individuality’, Lockean ‘substrata’,

Scotusian ‘haecceitas’, Adamsian ‘primitive thisness’) is needed. (We showed this by

proving PII (32) in QM−, by contraposition, i.e. by showing that non-identical similar

particles are physically discernible.) Fermions are discernible and are perfectly respectable

as physical objects of predication and quantification in accordance with elementary logical

syntax, even in a language in which identity is not primitive.

We should now point out that the same conclusion must therefore follow for aggregates

of fermions, such as atoms, including atoms of integral spin: for mereologically speaking,

wholes whose parts are discernible are themselves discernible; wholes are identical iff all

their parts are identical (see theorems in Muller [2008], end of Section 1.3). Therefore, the

only known entities that presumably should not count as physical objects, or ‘things’, by

our lights — failing a satisfactory account of probabilistic discernibility — would seem to

be the elementary bosons (photons, the W , Z and Higgs bosons, and gluons), all of them

gauge particles. The real objects of predication and quantification, in these cases, may
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better be judged the modes of the relevant quantum fields, modes whose excitations are

restricted to integers (see again Saunders [1996]).

Our qualms on the admissibility of probabilistic relations have not been respected in

the literature, however. Most authors, from Schrödinger to Margenau and onwards, have

made free appeal to probability distributions. By their lights, our result is still more

damning to their claims: for contra the currently dominant view, nothing at all in qm

threatens PII, and the metaphysically thin notion of object (formal object) in the tradition

of Frege, Carnap and Quine that accompanies it, when probabilistic relations are allowed.

For bosons as well as fermions can always be at least probabilistically, weakly, discerned.

Permit us to compare our main conclusion to a claim of French & Krause [2006, p. 160]

(our emphasis):

The upshot, then, is that if the non-intrinsic, state-dependent properties are iden-

tified with all the monadic or relational properties which can be expressed in terms

of physical magnitudes associated with self-adjoint operators that can be defined for

the particles, then it can be shown that two fermions or two bosons or two para-

particles in a joint symmetric or anti-symmetric state respectively have the same

monadic properties and the same relational properties one to another. Given this

identification, even the weakest form of the principle [our PII] fails and the Principle

of Identity of Indiscernibles is straightforwardly false.

This is the currently dominant view confidently expressed, notably including an open

invitation if not challenge to go beyond DiscPr (Section 3.1). This claim is incompatible

with our result. Using only what French & Krause allow, PII is straightforwardly true

rather than straightforwardly false.

Aware of Saunders’ [2003, 2006a] claim that two fermions in the singlet-state can

be discerned weakly, French & Krause [2006, pp. 169–170] charge Saunders with begging

the question, in order to defend the dominant view. In Quinean vein, the particles are

taken to be values of variables, they say, but variables range over sets of individuals, they

continue, so it is presupposed that particles are individuals. Small wonder Saunders is

able to discern them.

This objection is due to a confusion between: (i) formal objects and their logical

identity-condition, which is in L6=QM lexicon-indiscernibility (31), and (ii) physical objects

and their physical identity-condition, which is the correct and non-trivial implementation

of PII in LQM (32), in conjunction with its trivial converse, which results in the following

identity-criterion for physical objects:

PhysInd(a , b) ←→ a = b . (82)
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Treating particles as formal objects ab initio does not beg the question of whether PII

(32) holds or does not hold in qm, and hence whether (82) holds or does not hold in qm,

which is the very issue at stake. To repeat, the currently dominant view, expressed by

French & Krause in the quotation displayed above, is that PII (32) does not hold in qm,

and consequently that (82) does not hold in qm either. We claim to the contrary that

both hold.

French & Krause [2006, pp. 170–171] go on to charge Saunders’ weak discernibility

argument as involving a circularity : the numerical diversity of the particles has been pre-

supposed by the discerning relation that hence cannot account for this numerical diversity.

Indeed, we begin with the numerical diversity of having N > 1 labeled particles. If

we were to account for the numerical diversity by appealing to their labels only, say, and

not to anything physical, we would admittedly be trapped in a circularity. But we do

no such thing. The issue is, in terms of numerical diversity, whether one can account for

it physically, i.e. by means of what French & Krause mention in the quotation displayed

above, or whether one cannot. Further, if we were to begin with N physically discerned

objects and were to account for their numerical diversity in physical terms, we would

admittedly be trapped in a circularity. But we do no such thing either. The issue is, to

repeat, whether we can account physically for the given numerical diversity of N formal

objects when we assume they obey some postulates of quantum mechanics. We claim

that we can account for it, by means of physically meaningful relations. Our theorems

prove it.

So when French & Krause [2006, p. 171] throw a reversed slogan of Quine at Saunders

from Ruth Barcan Marcus, namely ‘No identity without entity’, they take this to mean

in the present context ‘No identity without physical object ’ and argue that the use of

the identity-relation, and any relation for that matter, presupposes physically discerned

objects ready to be related, they confuse again (i) formal objects and (ii) physical objects.

Once more, to apply the identity-predicate meaningfully, and any other dyadic predicate

for that matter, we need only formally discernible objects; we do not (need to) assume that

they are in addition physically discernible. Their physical discernibility is the entire issue

before us and its resolution depends on the physical theory in question, on what we postulate

about those objects ; what we postulate about them is what a few postulates of quantum

mechanics tell us and they appear to tell us that similar fermions are always categorically

physically discernible and that bosons are mostly but not always categorically discernible

and are always probabilistically discernible.

Our conclusion is that the criticism of French & Krause against the weak discernibility

result, in defence of the currently dominant view, is unconvincing.

The ultimate point of all this is not only to settle the question whether or not PII fails
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in qm, but also to settle the question whether or not PII is a defensible principle that can

actually be used to inquire into the nature of physical reality with the theories we have

in physics. We have defended PII; the use of PII is then to rule that elementary bosons

should not be viewed as physical objects at all, whereupon we are obliged to find a better

physical ontology, which in turn leads us linea recta into qft.

Having exploited more fully the resources of elementary syntax when it comes to

questions of identity than philosophers of physics have hitherto, with significant effect,

we must finally come back to the question: was Weyl ignorant of them too?

Recall that we began with a puzzle: brief, cryptic comments by Weyl on the question of

‘individuality’, where he appeared both to deny that electrons Hans and Karl could “retain

their identity” and to affirm that “in this way the Leibnizian principle of coincidentia

indiscernibilium carries through in modern physics” (see Section 1.1). Twenty-one years

later, Weyl says again that Leibniz’s principle is precisely expressed by the fact that the

electron gas is a “monomial aggregate” — and that neither to the photon can one ascribe

individuality. By now it should be clear there is a perfectly straightforward reading of

all these remarks, namely that they apply to states of aggregates of electrons as wholes.

That is, Leibniz’s PII is being used to identify global states of affairs that one would have

thought distinct were electrons “to have an identity”. Nor is there anything untoward in

this global use of Leibniz’s PII: Liebniz, in the Correspondence with Clarke, repeatedly

challenged the Newtonians on the status of global states of affairs (say those shifted in

respect of the matter content of the universe relative to space), that are qualitatively

identical, on the ground that the choice between them would involve a violation of the

Principle of Sufficient Reason. This principle and PII were always closely linked (see

Russell [1937, pp. 55–63]).

As for “the Leibniz-Pauli Exclusion Principle”, Weyl [1949, p. 247] said, “it is found

to hold for electrons but not for photons” — indeed. Strictly speaking, he might have

continued, photons are not really things at all, not even properly members of a “mono-

mial aggregate” (the real entities are perhaps the modes of quantum fields). But on such

matters, alas, Weyl had nothing to say.
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